Mutations in *atpG* affect postranscriptional expression of *pckA* in *Escherichia coli*

A thesis submitted to the College of Graduate Studies and Research in partial fulfilment of the requirements for the Degree of Masters of sciences in the Department of Microbiology and Immunology University of Saskatchewan

By

Jasnehta Permala-Booth

© Copyright Jasnehta Permala-Booth April 2008 All rights reserved.
Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the head of the department or the Dean of the college in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or make other use of material in this thesis in whole or in part should be addresses to:

Head of the Department of Microbiology and immunology
107 Wiggins Road
University of Saskatchewan
Saskatoon, Saskatchewan
Canada S7N5E5
Abstract

Prokaryotic cells such as *Escherichia coli* use glucose as their preferred carbon source. In the absence of glucose, these cells resort to other sources to generate glucose and this process of *de novo* synthesis of glucose is termed gluconeogenesis. Phosphoenolpyruvate carboxykinase (Pck) is one of the three enzymes important in regulating gluconeogenesis. It converts oxaloacetic acid (OAA) from the Krebs cycle to phosphoenolpyruvate (PEP), a glycolytic intermediate. The Pck structural gene (*pckA*) is regulated by catabolite repression. There is a 100-fold induction of *pckA-lacZ* fusions at the onset of stationary phase concurrent with induction of glycogen synthesis. Mutants affecting the expression of *pckA* were analysed to shed some light on the mechanism of its genetic regulation.

Spontaneous mutants isolated with Pck⁻ (lack of PEP carboxykinase activity) and Suc⁻ (inability to utilise succinate as carbon source) phenotypes were previously characterised as *atpG* mutants defective in the γ subunit of ATP synthase.

In this work we find by reverse transcriptase and real time quantitative PCR that levels of *pckA* mRNA are normal in the *atpG* mutants and that the defects in expression of *pckA* are therefore likely at the level of translation, protein assembly and/or protein degradation. As expected, ATP synthase activity and proton pumping in inside-out membrane vesicles were defective in these *atpG* mutants. It is likely that one of these defects is affecting regulation or expression of the *pckA* gene. It was observed that *atpG* mutants were defective in calcium-dependent transformation although they could be made competent for electroporation. The *atpG* mutants were also defective for growth of P1 bacteriophage although they could serve as recipients for P1-dependent generalised
transduction. These latter phenotypes are also likely due to defects in energy metabolism.
ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to my supervisor, Dr. Goldie, who has been a nurturing mentor during my study. I would also like to thank the members of the committee: Drs. Harold Bull and Peter Howard for their guidance.

I thank Drs. Vikram Misra, Phil Gobeil, Oksana Akhova from Veterinary Microbiology and Dr. Rozwadoski and Tricia Kreiser from Agriculture Canada for allowing me to use their real time (qPCR) cycler and for their support and advice in using the qPCR cycler. I would also like to thank Dr. George Mackie for the revised protocol for RNA extraction. My thank also goes to Jayaum Booth for his technical advice in qPCR. I also want to thank Dr. J Lee and personnel from his lab in the Department of Biochemistry for their help in using the Hitachi F-2500 FL spectrophotometer. I would also like to thank Mary Woodsworth from Microbiology and Immunology for technical support and advice.

My thanks to members of my lab, Seema Madhavan, Deng Mapiour, Babak Rajabi for the numerous discussions, science or otherwise.

I greatly appreciate the financial support provided by the Department of Microbiology and Immunology and by the College of Medicine Graduate Scholarships. This work was supported by grant from the Natural Science and Engineering Research Council of Canada (NSERC).

Lastly, I would like to express my gratitude to my parents, sibblings and husband, whose sacrifice, love, guidance and support made me the person I am today. They have provided me with everything in life to make me successful. My smile will always reflect the love, happiness you instilled in me. Thank you.
To my parents, husband and siblings
Table of Contents

- Permission to use i
- Abstract ii
- Acknowledgements iv
- Dedication v
- Table of contents vi
- List of tables ix
- List of figures x
- List of abbreviations xii

1.0 CHAPTER ONE: INTRODUCTION

1.1 Overview 1
 1.1.1 Gluconeogenesis 2
 1.1.2 Gluconeogenesis in Escherichia coli 2
 1.1.3 Synthesis of phosphoenolpyruvate (PEP) 4

1.2 Phosphoenolpyruvate carboxykinase (Pck) in Escherichia coli 5
 1.2.1 Structure of Pck 5

1.3 Regulation of genes in stationary phase 7

1.4 pckA gene encoding PEP carboxykinase 13
 1.4.1 Regulation of pckA expression in E. coli 14

1.5 ATP synthase in Escherichia coli 17
 1.5.1 Structure of ATP synthase 17
 1.5.2 Genetic mapping of atp genes 20

1.6 Research objectives 22
 1.6.1 Previous findings 22
 1.6.2 Purpose of this research 26

2.0 CHAPTER TWO: MATERIALS AND METHODS

2.1 Media and Reagents 27
 2.1.1 Bacterial strains and plasmids used in this study 28
 2.1.2 Growth of cultures 29
2.2 Measuring Pck enzyme activities
 2.2.1 CTAB treated cells
 2.2.2 Pck assay

2.3 ATP synthase enzyme activity
 2.3.1 Preparation of inside out vesicles
 2.3.2 ATP synthase assay

2.4 Real-Time reverse transcriptase polymerase chain reaction
 to measure mRNA levels during bacterial cell growth
 2.4.1 RNA extraction
 2.4.2 RNA quality and quantity determination
 2.4.3 cDNA synthesis
 2.4.4 Lux primers
 2.4.5 Quantification of PCR
 2.4.6 Normalising real-time reverse transcriptase PCR data
 2.4.6.1 Relative method
 2.4.6.2 Absolute method

2.5 Molecular Biology Methods
 2.5.1 PCR amplification
 2.5.2 DNA electrophoresis
 2.5.2.1 Agarose Gel Electrophoresis-1%
 2.5.2.2 Denaturing Agarose Gel Electrophoresis
 2.5.2.3 SDS Acrylamide Gel electrophoresis
 2.5.3 Plasmid DNA purification
 2.5.4 Electroporation
 2.5.4.1 Preparation of competent cells for electroporation
 2.5.4.2 Electroporation and plating

2.6 Detecting formation of the electrochemical H⁺ gradient
 2.6.1 Fluorescence quenching
 2.6.2 Fluorescence measurements
 2.6.3 Generation of data

3.0 CHAPTER THREE: RESULTS

3.1 Growth and phenotypes of atpG mutants and wild type
 3.1.1 Phenotypes of atpG mutants and wild type HG163
 3.1.2 Growth of atpG mutants and wild type HG163

3.2 Pck enzyme activities in atpG mutants and wild type HG163

3.3 ATP synthase specific activity

3.4 Real time reverse transcriptase PCR assay of pckA mRNA levels
3.4.1 RNA quality
3.4.2 RNA quantity (concentration)
3.4.3 Levels of pckA mRNA expression in atpG mutants and in wild type HG163

3.5 Fluorescence quenching of Acridine orange as a measure of Hydrogen ion flux in atpG isolates
 3.5.1 Complementation of bacterial strains with vector Plasmid and atpG+ plasmid
 3.5.2 H+ flux in inside-out vesicles

4.0 CHAPTER FOUR: DISCUSSION AND CONCLUSIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Phenotypes and growth of atpG mutants</td>
<td>66</td>
</tr>
<tr>
<td>4.1.1 Phenotype of atpG mutants</td>
<td>66</td>
</tr>
<tr>
<td>4.1.2 Growth yield and doubling time of atpG mutants</td>
<td>67</td>
</tr>
<tr>
<td>4.2 Possible reasons for lower expression of pckA in atpG mutants</td>
<td>67</td>
</tr>
<tr>
<td>4.3 ATP synthase activities in atpG mutants</td>
<td>68</td>
</tr>
<tr>
<td>4.4 Expression of pckA mRNA in atpG mutants</td>
<td>70</td>
</tr>
<tr>
<td>4.5 Proton flux in atpG mutants and wild type HG163</td>
<td>72</td>
</tr>
<tr>
<td>4.6 Conclusion</td>
<td>74</td>
</tr>
<tr>
<td>4.7 Future work</td>
<td>75</td>
</tr>
</tbody>
</table>

APPENDICES
REFERENCES
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Bacterial strains and plasmids used in this study</td>
<td>28</td>
</tr>
<tr>
<td>Table 2</td>
<td>Phenotype of wild type and mutants on selective plates</td>
<td>45</td>
</tr>
<tr>
<td>Table 3</td>
<td>Doubling times and growth yields of atpG mutants and wild type</td>
<td>48</td>
</tr>
<tr>
<td>Table 4</td>
<td>Growth of bacterial strains on selective antibiotics plates.</td>
<td>61</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Pathways of carbohydrate metabolism in Escherichia coli</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Promoter region of pckA</td>
<td>14</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Growth and β-galactosidase activity in pckA-lacZ fusion strains grown in the presence and absence of glucose</td>
<td>15</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Growth and β-galactosidase activity in ΔcyA pckA-lacZ fusion strain grown in the presence and absence of cAMP</td>
<td>16</td>
</tr>
<tr>
<td>Figure 5</td>
<td>FruR binding site located 100 bp upstream of pckA promoter region</td>
<td>17</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Diagramatic representation of ATP synthase</td>
<td>18</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Published DNA sequence of C-terminal region of the γ subunit of ATP synthase in wild type aligned with sequence of atpG mutants</td>
<td>25</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Quenching of fluophore in a Lux forward primer</td>
<td>34</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Growth curve of WT and atpG mutants (HG203, HG205 and HG206) as a function of time</td>
<td>46</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Growth curve of WT and atpG mutants (HG208, HG209 and HG210) as a function of time</td>
<td>47</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Pck enzyme specific activity of WT and atpG mutants, HG203, HG205 and HG206</td>
<td>49</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Pck enzyme specific activity of WT and atpG mutants, HG208, HG209 and HG210</td>
<td>50</td>
</tr>
<tr>
<td>Figure 13A</td>
<td>ATP synthase specific activity in WT and atpG mutants, HG203, HG205 and HG206</td>
<td>52</td>
</tr>
<tr>
<td>Figure 13B</td>
<td>ATP synthase specific activity in WT and atpG mutants, HG208, HG209 and HG210</td>
<td>52</td>
</tr>
<tr>
<td>Figure 14</td>
<td>1 % denaturating agarose gel showing total RNA extracted in wild type and atpG mutants</td>
<td>54</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Individual standard data for quantitative PCR</td>
<td>56</td>
</tr>
<tr>
<td>Figure 16</td>
<td>A typical standard curve generated for pckA mRNA levels</td>
<td>57</td>
</tr>
<tr>
<td>Figure 17</td>
<td>pckA mRNA levels in WT and atpG mutants, HG203, HG205 and HG206</td>
<td>58</td>
</tr>
<tr>
<td>Figure 18</td>
<td>pckA mRNA levels in WT and atpG mutants, HG208, HG209 and HG210</td>
<td>59</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Fluorescence quenching of acridine orange in WT and atpG mutants, HG203, HG205 and HG206</td>
<td>62</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Fluorescence quenching of acridine orange in wt and atpG mutants, (HG203, HG205 and HG206) complemented with</td>
<td>63</td>
</tr>
</tbody>
</table>
atpG plasmid

Figure 21 Fluoresence quenching of acridine orange in wt and atpG mutants, (HG203, HG205 and HG206) complemented with vector plasmid

Figure 22 Summary of quenching results

Figure 23 Diagramatic representation of fluorescence quenching of acridine orange in functional inside out vesicles.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aceA</td>
<td>isocitrate lyase gene</td>
</tr>
<tr>
<td>aceB</td>
<td>malate synthase A gene</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine biphosphate</td>
</tr>
<tr>
<td>AmpR</td>
<td>ampicillin resistant</td>
</tr>
<tr>
<td>ANSA</td>
<td>1-amino-2 naphthol-4 sulfonic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>ATPase</td>
<td>ATP synthase</td>
</tr>
<tr>
<td>atp</td>
<td>genes of the operon encoding ATPase</td>
</tr>
<tr>
<td>Atp</td>
<td>phenotype: normal or low ATPase activity</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine 3'-5' monophosphate</td>
</tr>
<tr>
<td>CamR</td>
<td>chloramphenical resistant</td>
</tr>
<tr>
<td>CCCP</td>
<td>carbonyl cyanide-3-chlorophenylhydrazone</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>Crp</td>
<td>Cyclic AMP receptor protein</td>
</tr>
<tr>
<td>crr</td>
<td>Catabolite repression resistance: glucose phosphotransferase Enzyme II A</td>
</tr>
<tr>
<td>csrA</td>
<td>carbon storage regulator gene</td>
</tr>
<tr>
<td>C_t</td>
<td>comparative threshold</td>
</tr>
<tr>
<td>CTAB</td>
<td>cetyl tetra ammonium bromide (hexadecyl tetra ammonium bromide)</td>
</tr>
<tr>
<td>cya</td>
<td>adenylate cyclise gene</td>
</tr>
<tr>
<td>cydA</td>
<td>cytochrome d oxidase subunit I gene</td>
</tr>
<tr>
<td>dATP</td>
<td>2'-deoxyadenosine 5' -triphosphate</td>
</tr>
<tr>
<td>DCCD</td>
<td>1,3-dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>dCTP</td>
<td>2' -deoxygenidine 5'-triphosphate</td>
</tr>
<tr>
<td>dGTP</td>
<td>2'-deoxyginoesine 5'-triphosphate</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DnaK</td>
<td>chaperone protein (heat shock protein family 70 protein)</td>
</tr>
<tr>
<td>dsrA</td>
<td>Downstream region: gene for small RNA regulator of RpoS and H-NS</td>
</tr>
<tr>
<td>dUTP</td>
<td>2'-deoxygenidine 5'-triphosphate</td>
</tr>
<tr>
<td>E. coli K12</td>
<td>Escherichia coli strain K12</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediminotetraacetic acid</td>
</tr>
<tr>
<td>endA1</td>
<td>endonuclease I gene</td>
</tr>
<tr>
<td>FAM</td>
<td>6-carboxy-fluorescein</td>
</tr>
<tr>
<td>Fbp</td>
<td>fructose-bis-phosphatase</td>
</tr>
<tr>
<td>FruR</td>
<td>repressor of fructose operon</td>
</tr>
</tbody>
</table>
g gravitational force
GFP green fluorescence protein
\textit{g}glgB 1,4-\textalpha{-glucan branching enzyme gene
\textit{g}lgC glucose-1-phosphate adenylyltransferase gene
\textit{g}lnG nitrogen regulation protein I gene
\textit{gl}tA citrate synthase gene
Gro growth yield phenotype
HU DNA-binding protein II
H-NS Heat-stable nucleoid-structuring protein
\textit{i}cdA isocitrate dehydrogenase gene
KanR kanamycin resistant
kDa kilo Dalton
LB Luria-Bertani Broth
LUX Light Upon Extension
\textit{md}h malate dehydrogenase gene
MM Minimal Media A
MOPs 3-(N-morpholino) propanesulfonic acid
MOPS 3-(N-morpholino) propanesulfonic acid
mRNA messenger ribonucleic acid
NADH nicotinamide adenine dinucleotide
\textit{nd}h NADH dehydrogenase II gene
NMR nuclear magnetic resonance
OAA oxaloacetic acid
\textit{omp}F outer membrane protein F precursor gene
PAP1 poly(A) polymerase
Pck phosphoenolpyruvate carboxykinase
PCR Polymerase chain reaction
PCS PCS scintillation fluid
PEP phosphoenolpyruvate
pH\textsubscript{i} intracellular pH
\textit{pho}R Phosphate regulon sensor gene
Pi phosphate
poly-P Inorganic polyphosphate
ppGpp guanisine tetraphosphate
ppk polyphosphate kinase gene
Pps Phosphoenolpyruvate synthase
Pro proline
psi force per square inch
PTS phosphotransferase system
Pyr pyruvate
qPCR quantitative PCR
R^2 a measure of goodness-of-fit of linear regression
RelA GTP pyrophosphokinase
RNA ribonucleic acid
RNP ribonucleic acid polymerase
rpm revolutions per minute
rpoD RNA polymerase sigma factor D (σ^{70}) gene
RpoS RNA polymerase stationary phase sigma factor (σ^S) gene
rrn ribosomal RNA gene
Rsd regulator of sigma 70
RT Reverse transcriptase
RT-PCR Reverse transcriptase PCR
RT-rtPCR Reverse transcriptase real time PCR
SpoT (p)ppGpp pyrophosphohydrolase
Suc succinate
sucA 2-oxoglutarate dehydrogenase E1 component gene
sucB dihydrolipoamide succinyltransferase component E2 gene
sucD succinyl-CoA synthetase α chain gene
Taq Thermus aquaticus DNA polymerase
TBE Tris-Borate-EDTA
TCA Trichloroacetic acid
TetR tetracycline resistant
thi-1 Unmapped mutation in thamine biosynthesis operon at 90.4 map units on chromosome: thiamine auxotrophy.
topA DNA topoisomerase I gene
Tris Tris-(Hydroxymethyl)amino ethane
UDG uracil DNA glycosylase
X-gal 5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside
yhiF ORF, hypothetical protein gene
α/β alpha and beta
$\Delta \mu H^+$ proton electrochemical gradient
σ sigma subunit of RNA polymerase
1.0 Introduction

1.1 Overview

Unicellular microorganisms such as *Escherichia coli* have the ability to detect changes in their environment and to adapt their metabolism rapidly to external fluctuations. One of the frequent changes is that of nutrients acting as a limiting factor during starvation until an adequate food source becomes available. Prokaryotes monitor their surroundings directly by membrane-bound sensors, and indirectly by intracellular sensors, which detect changes in pools of intracellular metabolites that vary as the consequence of extracellular changes. These sensors are linked through complex signal transduction pathways to global regulatory networks (Lynch and Lin, 1996). Global control systems regulate metabolic networks and one such example is carbon source utilisation. *Escherichia coli* can utilise a variety of carbon sources by regulating appropriate networks of gene, transport systems and enzymes (Jahreis and Lengeler, 1993).

The mechanisms of utilisation and transport of sugars across the bacterial cell membrane under different environmental conditions are still not completely understood (Lengeler, 1993). However, different studies have shown that prokaryotes carry a battery of carbohydrate transport systems, of which at least seven different types have been described (Fonyo *et al.*, 1976). Each of these systems is optimised for specific growth conditions and depends on the energy status of the cell. Many known routes of carbohydrate uptake occur through active transport systems (Krulwich, 1990). The energy source for transportation may be transmembrane electrochemical gradients of protons (carbohydrate-H\(^+\) symporters) (Kaback, 1990) or of sodium ions (carbohydrate-
Na\(^+\) symporters) (Dimroth, 1990), hydrolysis of ATP (Ames, 1990), or vectorial transport (Meadow et al., 1990; Saier and Chin, 1990).

Glucose is the primary sugar used by many prokaryotes as a carbon source. In the absence of glucose, the cell resorts to other carbon sources to generate glucose (Brosnan, 1999). *De novo* synthesis of glucose from lipids and amino acids is termed gluconeogenesis. Amino acids, lipids and other gluconeogenic substrates are generally degraded to Krebs cycle intermediates prior to gluconeogenesis.

1.1.1 Gluconeogenesis

Gluconeogenesis, the reverse of glycolysis, is a universal process occurring in most living organisms (Fig. 1). Both the glycolytic and gluconeogenic pathways are independently regulated via reactions that are specific for either pathway. However, many steps are shared between these two processes. Although most of the gluconeogenic reactions are the reverse of glycolysis reactions, three steps in glycolysis are irreversible. They are; the conversion of glucose to glucose-6-phosphate; the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate, and the conversion of phosphoenolpyruvate (PEP) to pyruvate.

1.1.2 Gluconeogenesis in *Escherichia coli*

For gluconeogenesis, three irreversible reactions are important in *E. coli* K12 (Sanwal, 1970): Phosphoenolpyruvate carboxykinase (Pck) which converts oxaloacetic acid (OAA) to phosphoenolpyruvate (PEP); phosphoenolpyruvate synthase (Pps) which converts pyruvate to PEP, and fructose-bis-phosphatase (Fbp) which converts fructose-
1,6-bisphosphate to fructose-6-phosphate (Fig. 1). The enzyme responsible for the first committed step of gluconeogenesis from Krebs cycle intermediates is Pck.

At the onset of stationary phase, bacteria convert carbohydrate to glycogen used for storage of energy (glycogenesis). Pck activity and gluconeogenesis are therefore required to produce carbohydrates if they are not present in the growth medium. A key regulatory gene involved in glycogenesis is known as csrA (carbon storage regulator) (Romeo et al., 1993). It negatively controls glgC and glgB (genes for enzymes involved

Fig 1: Pathways of carbohydrate metabolism in *Escherichia coli*. Genes are named in parentheses. Adapted from Phue *et al.*, 2005.
in glycogen synthesis) as well as the genes expressing gluconeogenic enzymes like \textit{pckA} (Sabnis \textit{et al.}, 1995). However, the effect of \textit{csrA} is not large enough to explain stationary phase induction of \textit{pckA} (Goldie, 1984). The conversion of carbohydrate into endogenous glycogen is favoured as the cells enter stationary phase, while in late stationary phase, there is a decrease in activities of the gluconeogenic enzymes (Sabnis \textit{et al.}, 1995).

Carbohydrate metabolism also plays a critical role in anaplerosis, which is the replenishing of Krebs cycle intermediates. Gluconeogenesis could be viewed as a catapleurotic reaction, where the Krebs cycle intermediates are depleted by withdrawing oxaloacetic acid from the Krebs cycle to produce PEP (Brosnan, 1999). Gluconeogenesis may occur only when balanced by anapleurotic reactions like synthesis of four carbon units by the glyoxylate pathway or by the production of intermediates from gluconeogenic amino acids. In the presence of some carbohydrates, the gluconeogenic pathways in prokaryotes are subjected to catabolite repression. In the absence of carbohydrates, high levels of cAMP will activate the transcription of genes encoding gluconeogenic enzymes. Gluconeogenesis is also important when the bacteria have depleted most of the carbohydrate in the medium and they have to rely on gluconeogenesis for the synthesis of glucose from amino acids and fats for growth.

1.1.3 Synthesis of phosphoenolpyruvate (PEP)

Two pathways exist for the synthesis of PEP from four-carbon intermediates in \textit{E. coli} during gluconeogenesis. One pathway involves the enzyme Pck while the other involves the sequential action of the NAD-dependent malic enzyme and Pps ((Fig. 1),
Goldie and Sanwal, 1980). Gluconeogenic growth in *E. coli* is controlled by *pck* and *pps* as determined by Goldie and Sanwal, (1980a) and Chao *et al.* (1993).

For growth on succinate and other four carbon metabolites, Pck converts oxaloacetate to PEP, which can be converted to pyruvate by pyruvate kinase (Chao *et al.*, 1993). Mutants with null alleles of *pps* cannot grow on pyruvate (Cooper *et al.*, 1967) but can grow on succinate (Fig. 1). To generate a Suc⁻ phenotype (inability to grow on succinate minimal medium), null alleles in both *pps* and *pck* are needed since malic enzymes and Pps can supply PEP in *pck⁻* cells (Goldie and Sanwal, 1980a). Double mutants, deficient in Pck and Pps or double mutants deficient in Pck and the NAD-dependent malic enzyme are unable to grow on four carbon sugars such as succinate, fumarate, malate, acetate and pyruvate but grow well on glucose or glycerol as a sole carbon source. On the other hand, single mutants deficient in any of these enzymes are able to grow on four-carbon intermediates readily (Goldie and Sanwal, 1980a).

Although two pathways were shown to exist for the synthesis of PEP during gluconeogenesis in *E. coli*, our focus will be on the major pathway, Pck. The gene coding for Pck (*pckA*) appears to have interesting regulatory mechanisms, since it is regulated genetically by catabolite repression and activated by another unknown signal in stationary phase (Goldie, 1984).

1.2 Phosphoenolpyruvate carboxykinase (Pck) in *Escherichia coli*.

1.2.1 Structure of Pck

E. coli Pck is a monomeric, globular protein of Mr 60,000 that belongs to the α/β class of proteins. It has two domains, a 275 amino acid residue N-terminal domain and a
compact 265 amino acid residue C-terminal domain. The active site is found at the base of a deep cleft between the two domains (Sudom et al., 2003).

The crystal structure of the ATP-Mg\(^{2+}\)-Ca\(^{2+}\)-pyruvate-Pck quinary complex of E. coli’s Pck was solved using molecular replacement techniques (Sudom et al., 2003) and the structure was subsequently refined against 1.8-Å resolution data. This structure is isomorphous to that of the ATP-Mg\(^{2+}\)-Mn\(^{2+}\)-pyruvate Pck complex (Tari et al., 1997) except for the Ca\(^{2+}\) and Mn\(^{2+}\) binding sites. Under the crystallisation conditions, ADP and PEP react to form ATP and pyruvate. In the presence of saturating concentration of ATP, Pck requires divalent metal cations for activity. Kinetic studies on ATP demonstrate that combinations of Mg\(^{2+}\) and Mn\(^{2+}\) or Mg\(^{2+}\) and Ca\(^{2+}\) induce synergistic activations of enzyme activity, suggesting a dual cation function (Goldie and Sanwal, 1980b). X-ray crystallography (Tari et al., 1997) shows that both metals are present at the active site. Optimum activity was observed in presence of millimolar concentration of Mg\(^{2+}\) and micromolar concentrations of Mn\(^{2+}\) (Goldie and Sanwal, 1980b). When MgATP binds, Pck undergoes a domain closure via a 20-degree rotation of the amino and the carboxyl terminal domains towards each other. This traps substrates, excludes solvent from the active site and repositions the important active site groups and metal ions in the active site. When Mg\(^{2+}\) is absent, there is no synergistic effect of adding Ca\(^{2+}\) and Mn\(^{2+}\). The synergistic effect of adding Ca\(^{2+}\) can be abolished by partial digestion of Pck by trypsin while this does not affect Mn\(^{2+}\) activation. Binding of the fluorescent Ca\(^{2+}\) analogue, Tb\(^{3+}\) indicates the presence of two Tb\(^{3+}\) sites on Pck (Goldie and Sanwal, 1980b) while the X-ray crystallography structure of (Tb\(^{3+}\))\(_2\) complex of Pck showed the possibility of Ca\(^{2+}\) as an allosteric regulator of Pck via binding at both an internal active site and at a surface activating site (Matte et al., 1996). In 2003, Sudom, et al., were able
to solve the crystal structure of the ATP-Mg$^{2+}$-Ca$^{2+}$-pyruvate quinary complex of Pck. They showed that Pck complex contains Ca$^{2+}$ at the active site and not at the putative allosteric site; however as mentioned, partial digestion of Pck can abolish activation by Ca$^{2+}$ without affecting activation of Mn$^{2+}$ (Goldie and Sanwal, 1980b). Thus, Mg$^{2+}$ and Ca$^{2+}$ both possess two distinct binding sites. Mg$^{2+}$ correctly positions and activates ATP while Ca$^{2+}$ (or Mn$^{2+}$) serves to activate the Pck catalytic reaction by directly bridging and activating ATP and the enolate anion of pyruvate. The chemical properties of Ca$^{2+}$, observed changes in active site residues and substrate orientation as well as studies of mutant Pcks indicate that Ca$^{2+}$ may serve as a non-allosteric activator in dual metal ion-facilitated phosphoryl transfer.

1.3 Regulation of genes in stationary phase.

Stationary phase is a general stress response that leads to dramatic changes in the protein profile and cellular composition and metabolism, which increase the cell’s resistance to many different harmful conditions. Transcription in bacteria is performed by a single multisubunit RNA polymerase (RNP). Core RNP is capable of transcript elongation but not of promoter-specific transcript initiation. For initiation to occur, it requires the addition of a sigma subunit (σ) to form the holoenzyme that is competent for promoter recognition and the formation of transcriptionally competent “open” complexes. The core enzyme has a subunit composition of $\alpha_2\beta\beta'\omega$ and a mass of 389 kDa (Busby and Ebright, 2000). A sigma subunit directs the core enzyme to initiate transcription at specific promoter sites on DNA. *E. coli* uses at least seven different σ factors. The gene expression profile of an individual cell will depend on the proportions of total RNP that are bound by the different σ factors (Ishihama, 2000). Changes in σ
factor activity provide an important mechanism for bacteria to respond to their environment. The activity of most σ factors is determined by their cellular level and also by the activity of anti-σ factors that prevent cognate σ factors from interacting with RNP (Dove et al., 2000). Most attention has focused on σ^{70}, the product of the rpoD gene, the most abundant σ factor that enables E. coli RNP to recognise most promoters and to initiate transcription (Ishihama, 2000; Murakami and Darst, 2003). During exponential cell growth, σ^{70} is responsible for transcription of most genes. However, when the cell enters stationary phase, the central regulator of stationary phase transcription is the sigma factor RpoS (σ^{38} or σ^{s}) whose accumulation is responsible for the expression of scores of stationary phase-specific genes (Hengge-Aronis, 2002). Most of these genes encode proteins that assist survival during stationary phase. Transcription of many of these genes is dependent on RpoS and thus these genes are not expressed during logarithmic growth.

Although RpoS is considered to be the stationary phase sigma factor in E. coli, σ^{70} still remains the predominant σ factor during stationary phase (Jishage and Ishihama, 1995). A non-growing cell “is believed” to have twice as many σ^{70} molecules as RpoS molecules (Ishihama, 2000; Jishage and Ishihama, 1995). Also, it has been shown that RNP has a higher affinity for σ^{70} than for RpoS (Maeda et al., 2000; Colland et al., 2002). The question of how RpoS can capture sufficient RNP to assure the expression of the essential RpoS-dependent genes still needs to be addressed. Jishage and Ishihama (1998) came to one possible explanation. They were able to identify an E. coli protein consisting of 158 amino acids residues, which is expressed upon entry into stationary phase and that can bind to σ^{70} but not to RpoS. In vitro and in vivo studies with this protein suggested that it inhibits the transcription of σ^{70}-dependent promoters (Jishage
and Ishihama, 1998; 1999). This protein and its corresponding gene were named Rsd (regulator of σ^{70}) and rsd respectively. Subsequent biochemical studies showed that Rsd could contact the carboxyl-terminal domain of σ^{70} (Jishage et al., 2000). Further mutational analyses identified σ^{70} residues located at a conserved region of domain 4, that contacts -35 elements at promoters and many trans-acting factors, to be important for the interaction with Rsd (Dove and Hochschild, 2001). To probe further the extent of the Rsd contact site on σ^{70}, Westblade et al., (2004), studied Rsd and σ^{70} and were able to show that Rsd and σ^{70} formed a 1:1 complex. Moreover, Rsd inhibited the core binding activity of σ^{70} domain to RNP by binding to some of σ^{70} side chains located in the 4.2 region (conserved region of domain 4 that contacts -35 elements at promoters and many trans-acting factors), thus confirming that region 4.2 is a crucial point of contact between Rsd and σ^{70} (Westblade et al., 2004). Thus, the presence of Rsd during the stationary phase led to the suggestion that its principal role is simply to sequester σ^{70} in nongrowing cells, so that more core RNA polymerase could be “captured” by the alternative factor, σ^{38}, which is needed for the expression of certain genes important for nongrowing cells.

Sequence alignments (Becker and Hengge-Aronis, 2001; Espinosa-Urgel et al., 1996; Lee and Gralla, 2001) as well as in vitro selection of an optimized RpoS-driven promoter (Gaal et al., 2001), demonstrated that the –10 region consensus is identical for RpoS and σ^{70} dependent promoters. The difference lies in observations made by many studies, which showed that RpoS-dependent promoter sequences always have high conservation of the –10 promoter element, whereas the –35 element tends to be more degenerate than in σ^{70}-dependent promoters (Becker and Hengge-Aronis, 2001; Espinosa-Urgel et al., 1996; Lee and Gralla, 2001). This is consistent with the
observation that in vitro, the RNP core enzyme/RpoS promoter interaction focuses on the –10 region, whereas contacts with the –35 region can be weak (Colland et al., 1999) thus RpoS-containing RNP can use degenerate –35 regions more efficiently than RNP core enzyme σ70. From these observations, it was concluded that some promoters could be recognized by both RpoS and σ70 while others are recognized only by one of those sigma factors (Tanaka et al., 1997).

In E. coli, rpoS expression is modulated at the level of transcription, translation and post-translational stability (Bertani et al., 2003). In E. coli, different stress signals control RpoS at the translational level via RNA regulatory molecules (dsrA, oxyS, rprA), secondary RNA structure, and RNA binding proteins (HU, H-NS and Hfq) (Hengge-Aronis, 2002). DsrA and rprA activate rpoS translation (Sledjeski et al., 1996), while OxyS inhibits RpoS translation by binding Hfq in competition with the rpoS leader (Zhang et al., 1998). The RNA-binding histone-like protein H-NS, has been implicated in negative translational regulation of RpoS levels (Barth et al., 1995; Yamashino et al., 1995), while RNA binding protein Hfq increases translation of rpoS mRNA since hfq mutants have shown to have a reduced level of RpoS (Brown and Elliot, 1996; Muffler et al., 1996).

Post-translationally, RpoS levels are controlled through its degradation by a response regulator called RssB and the ClpXP protease (Zhou and Gottesman, 1998). The increase in RpoS levels in stationary phase results in part from a substantial increase in its stability. The instability of RpoS during exponential growth phase is due to the activity of the ClpXP protease, which recognizes a 20 amino acid stretch between residues 170 and 190 (Schweder et al., 1996). This degradation is stimulated by the response regulator RssB (or SprE) (Muffler et al., 1997c, Pratt and Silhavy, 1996).
which increases the rate of ClpXP proteolysis by interacting with RpoS forming a complex that reduces activity of RpoS (Zhou and Gottesman, 1998). The decrease in degradation of RpoS in stationary phase is not due to a decrease in ClpXP but rather due to the presence of chaperone DnaK, which is ascribed the role of protecting RpoS from ClpXP (Muffler et al., 1997a; Rockabrand et al., 1998).

Transcriptional regulation of rpoS in E. coli also occurs but it appears to be less important (Venturi, 2003). A two-component sensor called BarA/UvrY, cAMP, and molecules such as polyphosphate and ppGpp (guanosine 3’,5’-bis pyrophosphate) have been implicated in transcriptional regulation of rpoS (Hengge-Aronis, 2002). The BarA sensor kinase has been demonstrated to induce rpoS transcription. In a barA mutant, it has been found that the amount of rpoS mRNA as well as RpoS protein are decreased (Mukhopadhyay et al., 2000). Afterwards, BarA was shown to be a cognate kinase of UvrY, a response regulator of the FixJ family (Pernestig et al., 2001). Surprisingly, UvrY does not seem to be implicated in rpoS activation (Hengge-Aronis, 2002b) and thus suggests that BarA activates rpoS through a different and unknown response regulator. Hence, BarA and UvrY could both be involved in the regulation of rpoS levels but in different ways: BarA upregulates rpoS whereas UvrY has a negative effect (Oshima et al., 2002). Moreover, we do not know if Bar A and UvrY are mutually dependent on each other to bring about these different controls and the signals that modulate this two-component system have yet to be determined (Oshima et al., 2002).

The rpoS promoter of E. coli contains two putative cAMP-Crp binding sites (Hengge-Aronis, 2002b). Transcription of a rpoS-lacZ fusion was reported to increase in the exponential phase of growth in cya (adenylate cyclase) and crp mutants, suggesting that the cAMP-Crp complex is involved in transcriptional repression rather than its
classical role as an activator (Lange and Hengge-Aronis, 1994). The observation that a

crr knockout mutant demonstrated a de-repressed expression of rpoS and accumulated
20 times more RpoS in exponential phase is consistent with a role for cAMP-Crp as a
negative regulator (Ueguchi et al., 2001). A vital component of the
phosphoenolpyruvate carbohydrate phosphotransferase system (PTS) of glucose uptake
is Crr protein. It is also a regulator of several cellular functions, including the
modulation of cAMP synthesis (Ueguchi et al., 2001). In fact, if cAMP is added in mid-
exponential phase to a crr mutant containing a rpoS-lacZ transcription fusion, the wild
type level of rpoS can be restored. This observation indicates that Crr acts indirectly
probably through modulating cAMP levels (Ueguchi et al., 2001).

In E. coli and Pseudomonas, the involvement of the ppGpp as a positive signal of
rpoS expression has been reported (Gentry et al., 1993; Hirsch and Elliott, 2002). The
ribosome associated RelA protein synthesised ppGpp due to a physiological response to
nutritional stress. Under starvation conditions, SpoT also mediate the synthesis of
ppGpp. Thus, only spoT relA double mutants completely lack ppGpp. Activity of rpoS-
lacZ fusions and RpoS levels are reduced in E. coli spoT relA double mutants. This
decrease have been attributed not to lower transcription initiation but to reduced
elongation by promoter deletion studies. This could be due to premature transcriptional
termination caused by the uncoupling of transcription and translation (Lange et al.,
1995). ppGpp also increases RpoS levels at the post-transcriptional level as
demonstrated by measuring the rate of RpoS synthesis by pulse labeling. ppGpp seems
to induce translation indirectly by regulating a non-ribosomal factor necessary for rpoS
translation (Brown et al., 2002).
The ppGpp “alarmone” has a positive control on the accumulation of inorganic polyphosphate (Gentry et al., 1993). Inorganic polyphosphate (poly-P) is a linear molecule that consists of hundreds of orthophosphate residues that accumulates in many bacteria under stress conditions and in stationary phase. It is a form of energy storage and has an important role in regulatory responses (Kornberg et al., 1999). Polyphosphate kinase is encoded by the *ppk* gene and polymerizes the terminal phosphate of ATP into a poly-P chain. The *ppx* gene encode exopolyphosphatase, poly(P)ase and degraded poly-P. In *E. coli*, if the amount of poly-P is reduced to barely detectable levels by over expressing a *ppx* gene, then significant decrease in *rpoS-lacZ* transcription would be observed. Under these conditions, RpoS levels fail to increase upon entry into stationary phase (Shiba et al., 1997).

1.4 *pckA* gene encoding PEP carboxykinase

The gene encoding the enzyme Pck in *E.coli* K12 is the *pckA* gene. Medina et al. (1990) sequenced the gene and mapped one strong mRNA start site using the S1 nuclease method. They were able to identify potential transcriptional regulatory sequences. Expression of *pckA-lacZ* operon fusions is induced in stationary phase cells (Goldie, 1984). Transcription of *pckA* appears to be controlled by a 280 bp region between a *Cla I* site and the initiation codon (Fig.2). A strong sigma σ^{70} promoter is located at –10 and –35 positions (Medina et al., 1990). N-terminal sequences of the enzyme and proteolytic fragments were used to confirm the identity of the protein product and the position of translational start. There is a 140 bp leader region between the transcription and translation start sites of unknown function (Fig.2).
1.4.1 Regulation of pckA expression in Escherichia coli.

Cyclic AMP receptor protein (Crp) and 3',5'-cyclic AMP (cAMP) are global regulators in carbon utilisation and play an important role in catabolite repression. This occurs because transport of glucose by the phosphotransferase system (PTS) diminishes activation of adenylate cyclase by factor IIA glucose phosphate and thus represses the formation of enzymes, such as Pck, whose activities would increase the already large intracellular pools of glycolytic metabolites. Catabolite repression probably serves the purpose of inhibiting gluconeogenesis when glucose and other carbohydrate carbon sources are available. Crp binds to cAMP forming a cAMP-Crp complex, which binds to specific sites at or near target promoters and brings about activation of transcription. (De Crombruggh et al., 1984). Crp is encoded by the crp gene, while adenylate cyclase (cAMP synthesis) is encoded by cya gene. Gel shift experiments indicated that three molecules of Crp protein bound to the pckA promoter in the presence of cAMP while footprints have been obtained for two of these sites, Crp1 and Crp2 (Goldie, unpublished). In 1984, Goldie et al., used Mud(lacZ AmpR) bacteriophage to isolate

Fig 2: Promoter region of pckA. CRP is the Crp binding site, -35 and -10 represent the binding site of σ^{70} and SD represents the Shine Delgarno ribosomal binding site. Between the transcriptional and translational start site there is a 140 bp leader region.
operon fusions of the transcriptional control sites of \(pckA \) to the \(\beta \)-galactosidase structural gene (\(lacZ \)), which showed that stationary-phase induction is probably exerted at the transcriptional level. The fusions were induced up to 100-fold at the onset of stationary phase in cells grown on LB while levels of \(\beta \)-galactosidase were lowered when glucose was added (Fig.3). On LB medium, \(\beta \)-galactosidase synthesis was not induced in \(pckA-lacZ \) fusions until the onset of stationary phase; although cAMP levels were high throughout growth. The fusions did not express high \(\beta \)-galactosidase activity during log-phase when cells were growth on LB with 5 mM cAMP (Fig.4). It was concluded that Pck synthesis is regulated not only by cAMP and glucose, but also by another unknown regulatory signal which is either required to inhibit \(pckA \) expression during log phase or to induce \(pckA \) expression during stationary phase.

![Graph](image)

Fig. 3: Growth (log optical density in Klett Units) and \(\beta \)-galactosidase specific activity were plotted for \(pck-lacZ \) fusion strain grown on LB in the presence and absence of glucose. Open circles are growth on LB and black circles are \(\beta \)-galactosidase specific activity. Open squares represent growth on LB + 0.4% glucose and black squares represent \(\beta \)-galactosidase activity in the presence of glucose and LB. Adapted from Goldie, 1984.
Besides cAMP, Ramseir et al. (1995) reported that the fructose repressor FruR (which is known to regulate expression of several genes concerned with carbon utilisation), also controls the expression of $pckA$. However, Goldie (unpublished) has been unable to observe an effect of $fruR$ mutations on Pck activity. A putative FruR operator site was reported about 100 bp upstream from the -35 promoter region of $pckA$ Ramseir et al., 1995; (Fig. 5). FruR has also been found to bind to a target DNA region located around -45.5 upstream of the $ppsA$ gene and circular permutation analysis showed that upon binding to its site, FruR induces a sharp bend of 120° in the DNA helix suggesting a crucial involvement of FruR-induced bending in $ppsA$ promoter activation (Negre et al., 1998).

Using computer analysis to study the prevalence of DNA static curvature in regulatory regions of $E. coli$, Olivares-Zavaleta et al., (2006) reported that the FruR regulator has a tendency to regulate operons with curved sequences in their 5' upstream regions.

Fig. 4: Growth and β-galactosidase specific activity for $cya pckA-lacZ$ fusion strain grown on LB in presence or absence of 5mM exogenous cAMP. Open squares represent growth on LB and black squares represent β-galactosidase specific activity for cells grown on LB only. Open circles represent growth on LB + 5mM cAMP while black circles represent β-galactosidase specific activity for cells grown on LB + 5mM cAMP. Adapted from Goldie, 1984.
ATP synthase (ATPase) has a molecular mass of 520,000 daltons (Capaldi and Schulenberg, 2000). It is a multisubunit enzyme which catalyses the synthesis of ATP from ADP and phosphate (P$_i$), utilising energy derived from the proton electrochemical gradient (ΔH$^+$) formed by electron transport (Hazard and Senior, 1993). It is a reversible H$^+$ pump, which plays two metabolically defined roles: in aerobic conditions, it utilises the proton motive force from the respiratory chain to synthesise ATP, and in anaerobic conditions, it utilises ATP from glycolysis to pump protons out of the cell, forming an electrochemical H$^+$ gradient that supplies energy for secondary transport systems (Shin et al., 1992). Wild type *E. coli* can use both oxidative phosphorylation and substrate level phosphorylation, whereas *atp* mutants (defective in ATPase) are dependent mainly on substrate level phosphorylation (Jensen and Michelsen, 1992).

1.5.1 Structure of ATP synthase

ATPase consists of eight different subunit types, in stoichiometry $\alpha_3\beta_3\gamma\delta\epsilon ab_2 c_n$. (Weber et al., 2004). These subunits are divided into the catalytic core (also known as the F$_1$ region) which consists of $\alpha_3\beta_3\gamma$, the stalk [rotor ($\epsilon\gamma$) and stator ($b_2\delta$)] and the
proton transport unit (also know as the F₀ region) acₙ (Fig. 6). Proton transport is effected by a and c subunits (Fillingame et al., 2000; Kaim et al., 1998; Rastogi and Girvin, 1999). The “rotor stalk” composed of εγ, is connected firmly to the c-ring at the base, and interacts with α and β at the top (Nakamoto et al., 1999; Stock et al., 1999; Capaldi et al., 2000). The movement of protons is believed to generate rotation of subunits c, ε and γ which act on the catalytic site (Diez et al., 2004). The catalytic core of the enzyme consists of a hexagon of alternating α and β subunits with helices of γ in the centre. ATP synthesis and hydrolysis reactions occur at three catalytic sites (Leslie and Walker, 2000).

![Diagram of ATP synthase](www.micro.biol.ethz.ch/op/ op_semdipl_dimroth2.htm)

Fig. 6: A diagrammatic representation of ATP synthase. Adapted from (www.micro.biol.ethz.ch/op/ op_semdipl_dimroth2.htm)

The three catalytic sites are located at the α/β interfaces of the alternating α/β hexagon (Hausrath et al., 1999). The γ-subunit shows three different faces, one to each α/β catalytic site interface, and is widely assumed to thereby impose a different
conformation on each catalytic site (Weber and Senior, 2000; 2001; Nananaciva et al., 2000). The stator is important to resist the rotor strain. The “stator stalk” is composed of \(b_2\delta\), with \(\delta\) contacting an \(\alpha\)-subunit at the top of the molecule (Wilkens et al., 2000; Ogilvie et al., 1997), and \(b_2\), anchored in the membrane by the N-terminal transmembrane helices (Dmitriev et al., 1999). The \(b\) subunit interacts with the \(a\)-subunit in the membrane (McLachlin et al., 2000; Jiang and Fillingame, 1998). The \(F_0\) portion in the membrane functions as a proton-driven motor that allows passive proton translocation caused by a proton gradient across the membrane. Subunit \(c\) functions as a rotor in the \(F_0\) region. It rotates relative to the \(ab_2\) complex, powered by the energy generated by the electron motive force across the membranes (Fillingame et al., 2002) in which \(H^+\) ions are believed to be transferred through aqueous channels of subunit \(a\) via a carboxyl-group of subunit \(c\) (\(c\)Asp61 in \(Escherichia coli\)). NMR study of \(E. coli\) subunit \(c\) (\(EF_0c\)) has revealed a hairpin-shaped conformation of subunit \(c\) (consisting of 10-14 residues), with two \(\alpha\)-helices (Dmitriev et al., 1999). During catalysis, the subunit \(b\) dimer undergoes transient elastic deformation in order to compensate for the torque which is built up by the propelling rotor (Capaldi and Aggeler, 2002). This torque is released by conformational changes leading to either \(H^+\) pumping through \(F_0\) or ATP synthesis in \(F_1\). The molecular switch, by which one or the other direction of catalysis is preferred, has been attributed to the \(\epsilon\) subunit (Schulenberg et al., 1997). From the studies so far, two models have been proposed for the rotation (or torque generation) mechanisms of the \(F_0\) motor (Nakano et al., 2006). The first one relies on simple rotational diffusion of the \(c\)-ring, which is driven by electrostatic forces across the membranes. This model assumes a rigid \(c\)-ring structure (Dimroth et al., 2003). The
structure of the c-ring from *I. tartaricus* Na⁺-ATPase seems to support the model. This model is proposed to work for Na⁺ pumping. The second model is more mechanical. A protonation-linked conformational change within subunit c drives larger-scale rotations of the whole c-ring in this model, derived from NMR observations (Rastogi and Girvin, 1998). Taking the twist motion into consideration, this model is consistent with cross-linking results between a-c subunits, (Jiang and Fillingame, 1998) and between c-c subunits (Jones *et al*., 1993). On the other hand, a double mutation experiment showed that the aspartate residue (cAsp61 in *E. coli*) can be relocated to the neighboring N-terminal helix without loss of function (Miller *et al*., 1990). This result implies that a global conformational change in the C-terminal helix of subunit c is not necessarily required for proton translocation.

1.5.2 Genetic mapping of atp genes

Each subunit of ATPsynthase is encoded by a single gene in the operon (Walker *et al*., 1984). The order of the genes in the operon is atpB, atpE, atpF, atpH, atpA, atpG, atpD and atpC, that encode the subunits a, c, b, δ, α, γ, β, and ε respectively. The atp operon maps at 84.6 min on the *E. coli* chromosome. A promoter sequence 73 bp upstream of atpB has been identified (Gay and Walker, 1981) and confirmed by the study of Tn10 insertions (Von Meyenburg *et al*., 1982) and Dnase I footprinting studies. Porter *et al*., (1983) showed that the promoter 73 base pairs upstream of the open reading frame is strongly active both *in vivo* and *in vitro* and it was concluded to be the atp promoter since the other promoter-like sequences upstream of atpB were either inactive or weakly active. They also concluded that the open reading frame preceding
the $atpB$ is part of the atp operon and they named it $atpI$. The $atpI$ gene product appears to be a hydrophobic protein. The atp operon expression was shown to occur from a single promoter located immediately before $atpI$ (Kasimoglu et al., 1996). They also suggested that the cell growth rate, rather than the type of carbon compound used for growth, is the major variable in controlling atp gene expression.
1.6 Research Objectives

1.6.1 Previous findings

The *pckA* gene is regulated at the transcriptional level by cAMP and requires another unknown regulatory signal for its induction at stationary phase (Goldie, 1984). Madhavan (2002) found that mutations in *atpG* encoding ATP synthase could lower the expression of *pckA* in *E.coli*. Stationary phase sigma factor σ^{38}, encoded by *rpoS* has been found to induce around 100 genes (Venturi, 2003). The first objective of Madhavan was to determine the effect of *rpoS* on *pckA*. She transduced *rpoS::Tn10* into a *pck-lacZ* strain and found that there was no effect of the *rpoS::Tn10* on the transcriptional fusion since all the transductants had the same blue colour on X-gal plates and there was no difference in β-galactosidase activities in *pck-lacZ* fusions in *rpoS*+ or *rpoS*– strains. Other stationary phase regulators such as *glnG, relA* (nitrogen limitation), *phoR* (phosphate limitation), and oxygen limitation were already ruled out (Goldie and Sanwal, 1980a). Madhavan performed mutagenesis using MiniTn10-ATS [(Kleckner et al., 1991), a kanamycin resistance transposon which lacks a transposase gene giving it more stability and less target specificity, to isolate mutants from strain HG163 (*pps*– and *pckA*+). She was able to isolate seven mutants with low specific activity of Pck (*Pck*–) and slow growth rate (*Gro*–). She investigated further to find a relationship between these two phenotypes. In *recA* mutants she found that, growth rate as well as growth yield was low (*Gro*–) while Pck specific activity was similar to wild type, (*Pck*+). In *pckA* mutants, she found that only Pck specific activity was affected (*Pck*–) while growth rate was like wild type (*Gro*+). Therefore, she concluded that these two phenotypes are not related to each other. Her third objective was to try to characterise the mutants she obtained. It has...
been found by genetic linkage that pckA is linked 20-30% to asd (Goldie and Sanwal, 1980a). From the mutants that were isolated, she obtained four (HG203, HG204, HG205 and HG206) that were not linked to asd and thus the low Pck specific activity in these mutants was not due to a mutation of pckA. Her next step was to find if these mutants were cya or crp since previous work showed that cya or crp mutants were obtained when trying to isolate regulatory mutants of pckA (Chan, 1987; Goldie, unpublished results). Mutants defective in cya or crp will not ferment sugars such as maltose and arabinose since the cAMP-Crp complex is required for the activation of the mal regulon and ara operon (Plumbridge, 2001; Notley and Ferenci, 1995). If the mutations in these isolated mutants were in the cya or crp gene then they would not be able to ferment maltose and arabinose. However, these isolates (HG203, HG 204, HG205 and HG206) did ferment these sugars suggesting that the mutations, affecting pckA were not in the cya or crp genes. Two pathways are involved in gluconeogenesis for the synthesis of PEP. One is the conversion of pyruvate to PEP by the enzyme phosphoenolpyruvate synthase (Pps) and the other is the conversion of oxaloacetate to PEP by phosphoenolpyruvate carboxykinase (Pck) (Goldie and Sanwal, 1980a). A pps+/pckA− mutant will grow on succinate as carbon source (Suc+ phenotype) because succinate is converted to malate, which in turn is converted to pyruvate by NAD dependent malic enzyme, which will be used by Pps to produce PEP, while pps−/pckA− double mutants will not be able to grow on succinate (Suc− phenotype). These four strains (HG203, HG 204, HG205 and HG206) were transduced to pps+ (using W3350 as a donor) to see whether the pps mutation was regulated for the Suc+ phenotype. However, the phenotype of the mutants after transduction to pps+ remained Suc−, since there was no growth of mutants on minimal plates containing succinate. This
observation led to the conclusion that the mutations were in a gene or genes where the Suc⁻ phenotype is independent of expression of the pck_A gene. Her fourth objective was to try to identify where insertion of the miniTn¹⁰-ATS occurred in the mutants by PCR of DNA flanking the insertion points and the observations made were surprising. The Suc⁻, Gro⁻, Kan^R mutants did not contain MiniTn¹⁰, as demonstrated by PCR. The deduction from this observation was that spontaneous mutations could have led to the formation of those mutants. It has been found by Thorbjarnadottir et al., (1978) that mutations in the atp gene could confer resistance to aminoglycoside drugs such as kanamycin. Mutants of atp are also Suc⁻ and this could be due to uncoupling and disruption of the electrochemical gradient and to transport defects (Boogerd et al., 1998). Downie et al., 1980 have also shown that atp mutations have no effect on growth rate but affect growth yield. Madhavan’s next experiment was to transform HG203, HG205 and HG206 with plasmids expressing the complete atp operon and she was able to get Kan^S Suc⁺ phenotypes. The transformed mutants had higher Pck specific activities and higher growth yields (Gro⁺). However, the Pck specific activity was not as high as wild type. Transforming the mutants with plasmids expressing the F₁ region of ATP synthase (Klionsky and Simoni, 1985), did complement the Suc⁻, Kan^R, Pck⁻, Gro⁻ and ATPase⁻ (Atp⁻) phenotypes of the three mutants. Transforming with plasmid expressing the γ subunit of ATP synthase (Shin et al., 1992) complemented the Suc⁻, Gro⁻ and Kan^R phenotypes in mutants thus indicating that the mutation was in atp_G. From those observations, she concluded that Suc⁻, Kan^R, Pck⁻, Gro⁻ and Atp⁻ are all due to the atp_G mutations in the three mutants. She also found that in mutants HG203 and HG205 there are identical “GC” deletions in atp_G that caused truncation of 28 amino acids at the
carboxyl terminal end of the γ subunit of ATP synthase, while in mutant HG206, there is a “T” deletion in atpG, which also caused truncation of 40 amino acids at the C-terminus (Fig. 7). Deletion of either the carboxyl terminus or the amino terminus of the γ subunit causes a failure in the assembly of F₁ (Shin et al., 1992). The C-terminal of γ subunit is important for functioning of F₁ complex as it assembles the catalytic core (F₁).

In an atpG mutant, F₀ acts only as a proton pore affecting both H⁺ flux and intracellular pH. These atpG mutants have lower expression of pckA, lower growth yield and are Suc⁻.

<table>
<thead>
<tr>
<th>Published Sequence</th>
<th>GIGTTGAAACCTGCCCACGCCGGCCGCCGCCGCTTGGTGGGATGAAGCCGGGCACGCACATGGGCGACCTGATTAGA (Walker et al., 1984)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG163 wild type</td>
<td>GIGTTGAAACCTGCCCACGCCGGCCGCCGCCGCTTGGTGGGATGAAGCCGGGCACGCACATGGGCGACCTGATTAGA</td>
</tr>
<tr>
<td>HG205 Mutant</td>
<td>GIGTTGAAACCTGCCCACGCCGGCCGCCGCCGCTTGGTGGGATGAAGCCGGGCACGCACATGGGCGACCTGATTAGA</td>
</tr>
<tr>
<td>HG206 Mutant</td>
<td>GIGTTGAAACCTGCCCACGCCGGCCGCCGCCGCTTGGTGGGATGAAGCCGGGCACGCACATGGGCGACCTGATTAGA</td>
</tr>
<tr>
<td>HG206 Mutant</td>
<td>GIGTTGAAACCTGCCCACGCCGGCCGCCGCCGCTTGGTGGGATGAAGCCGGGCACGCACATGGGCGACCTGATTAGA</td>
</tr>
</tbody>
</table>

Fig. 7: Published DNA sequence of the C-terminal region of γ subunit of ATP synthase in wild type aligned with sequence of mutants (Madhavan, 2002)
1.6.2. Purpose of this research

After isolating those \textit{atpG} mutants and determining that they had lower Pck activity, it was important to find out how and why the Pck activity was affected. There could be numerous reasons why the Pck activity is low in these \textit{atpG} mutants and for my masters thesis, we decided to investigate whether mutation in \textit{atpG} has some direct effect on \textit{pckA} expression at the transcriptional level. Having a non-functional ATP synthase, we also wanted to find out if electron transport and proton transport are affected in the \textit{atpG} mutants. Therefore, the hypothesis of this study is that mutations in \textit{atpG} do affect Pck expression at the transcriptional level. Moreover, \textit{atpG} mutants may have altered proton transport in the cell and this could affect the expression of \textit{pckA} directly or indirectly.

To address these hypotheses, the following objectives were formulated:

1. To repeat growth experiments with \textit{atpG} mutants isolated by Madhavan (2002) and derive accurate doubling time and growth yields.

2. To verify that transcription of \textit{pckA} increases significantly at the onset of stationary phase in \textit{E. coli} and to quantify the steady state mRNA concentrations.

3. To determine whether transcription of \textit{pckA} is affected by \textit{atpG} mutations.

4. To determine rates of proton transport by the electron transport chain in inside-out vesicles of wild type, \textit{atpG} mutants (HG203, HG205 and HG206) and complemented mutants.
CHAPTER TWO

2.0 Materials and Methods:

2.1 Media and Reagents

Growth media such as trytone, agar and yeast extract were purchased from DIFCO Laboratories, Detroit, MI. Minimal Medium A, and Luria-Bertani Broth (LB) (without glucose) were prepared as described by Miller (1972). All Minimal Media (MM) prepared, contained 0.01% vitamin B1 (thiamine) and 0.4% carbon source (glucose, pyruvate or succinate). Antibiotics such as tetracycline (20 µg/ml), chloramphenicol (25 µg/ml), ampicillin (100 µg/ml) and kanamycin (ranged from 5 to 25 µg/ml) were each added as required. Ticarcillin (100 µg/ml) was used in liquid media. PCS scintillation fluid for Pck specific activity assay was bought from Amersham Canada Ltd, Oakville, Ontario. Restriction enzymes were obtained from New England Biolabs inc. (Beverly, MA) and used according to the manufacturer’s instruction. Taq polymerase and deoxynucleotide triphosphates were purchased from Amersham Pharmacia Biotech, Inc. (Piscataway, NJ). Most of the biochemical, organic and inorganic chemicals were from Sigma-Aldrich, Canada and all were reagent grade. Kits required for molecular biological techniques were obtained from QIAGen Inc. (Valencia, CA). Custom-designed LUX Fluorogenic primers were ordered online from Invitrogen Canada Inc. (http://www.invitrogen.com). Quantitative PCR kits (Quantitative RT-PCR Thermoscript – one-step system and Superscript™ III Platinum® – two-steps system) were also purchased from Invitrogen Canada Inc.
2.1.1 Bacterial strains and plasmids used in this study

Table 1: Bacterial strains and plasmid used in this study

Bacterial Strains

<table>
<thead>
<tr>
<th>Strains</th>
<th>Genotype</th>
<th>Phenotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG163</td>
<td>pps</td>
<td>Lac<sup>-</sup>, Pyr<sup>-</sup></td>
<td>Madhavan S., M.Sc Thesis</td>
</tr>
<tr>
<td>HG203</td>
<td>kan<sup>R</sup>, pps, atpG551</td>
<td>Kan<sup>R</sup>, Pyr<sup>-</sup>, Suc<sup>-</sup>, Atp<sup>-</sup>, Gro<sup>-</sup>, Pck<sup>-</sup></td>
<td>Madhavan S., M.Sc Thesis</td>
</tr>
<tr>
<td>HG205</td>
<td>kan<sup>R</sup>, pps, atpG552</td>
<td>Kan<sup>R</sup>, Pyr<sup>-</sup>, Suc<sup>-</sup>, Atp<sup>-</sup>, Gro<sup>-</sup>, Pck<sup>-</sup></td>
<td>Madhavan S., M.Sc Thesis</td>
</tr>
<tr>
<td>HG206</td>
<td>kan<sup>R</sup>, pps, atpG553</td>
<td>Kan<sup>R</sup>, Pyr<sup>-</sup>, Suc<sup>-</sup>, Atp<sup>-</sup>, Gro<sup>-</sup>, Pck<sup>-</sup></td>
<td>Madhavan S., M.Sc Thesis</td>
</tr>
<tr>
<td>HG208</td>
<td>kan<sup>R</sup>, pps, atpG551</td>
<td>Kan<sup>R</sup>, Pyr<sup>-</sup>, Suc<sup>-</sup>, Atp<sup>-</sup>, Gro<sup>-</sup>, Pck<sup>-</sup></td>
<td>This work, Gro<sup>-</sup> suppressor of HG203</td>
</tr>
<tr>
<td>HG209</td>
<td>kan<sup>R</sup>, pps, atpG552</td>
<td>Kan<sup>R</sup>, Pyr<sup>-</sup>, Suc<sup>-</sup>, Atp<sup>-</sup>, Gro<sup>-</sup>, Pck<sup>-</sup></td>
<td>This work, Gro<sup>-</sup> suppressor of HG205</td>
</tr>
<tr>
<td>HG210</td>
<td>kan<sup>R</sup>, pps, atpG553</td>
<td>Kan<sup>R</sup>, Pyr<sup>-</sup>, Suc<sup>-</sup>, Atp<sup>-</sup>, Gro<sup>-</sup>, Pck<sup>-</sup></td>
<td>This work, Gro<sup>-</sup> suppressor of HG206</td>
</tr>
<tr>
<td>MM294A</td>
<td>pro, thi-1, endA1, hsdR17, SupE44</td>
<td>Pro<sup>-</sup></td>
<td>Backman et al. (1976)</td>
</tr>
</tbody>
</table>

Plasmids

<table>
<thead>
<tr>
<th>Plasmids</th>
<th>Drug resistance</th>
<th>Region expressed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pACYC184</td>
<td>Cam<sup>R</sup>, Tet<sup>R</sup></td>
<td>Vector</td>
<td>Chang and Cohen, (1978)</td>
</tr>
<tr>
<td>pDJK35</td>
<td>Cam<sup>R</sup></td>
<td>atpH,A,G,D,C</td>
<td>Klionsky and Simoni (1985)</td>
</tr>
<tr>
<td>pHG51</td>
<td>Amp<sup>R</sup></td>
<td>pckA</td>
<td>Sudom et al. (2003)</td>
</tr>
</tbody>
</table>
2.1.2 Growth of cultures

The OD₆₀₀ nm readings of 5 ml overnight cultures grown in LB medium at 37°C while shaking at 250 rpm were recorded. Volumes of overnight cultures corresponding to OD₆₀₀ nm of 0.001 were inoculated in 500 ml conical flasks containing 200 ml LB and shaken at 250 rpm at 37°C. Samples (10 ml) were kept on ice and used for Pck enzyme assays (5 ml) and RNA extraction (4 ml). OD₆₀₀ nm readings were read on a Pharmacia Biotech Ultrospec 3000 UV-spectrophotometer and growth curves were plotted using Graphpad Prism 4.0 software (GraphPad Software, Inc. San Diego).

2.2 Measuring Pck enzyme activities

2.2.1 CTAB-treated cells

Samples of 5 ml of culture were vortexed with 500 µl of 10X CTAB buffer (0.1% cetyl tetra ammonium bromide or hexadecyl tetra ammonium bromide, CTAB), 3mM MnCl₂, 0.2M imidazole, pH 7.5) and centrifuged for 10 min at 2,500 x g. The pellets were suspended in 1 ml, 1X CTAB buffer and centrifuged at 16,000 x g for two minutes. Supernatants were discarded and the pellet was suspended in 250 µl 1X CTAB buffer. The pellet was immediately vortexed at high speed before placing the tubes on ice for Pck assay.

2.2.2 Pck assay

Pck activities were assayed by measuring ATP-dependent exchange between NaH¹⁴CO₃ and oxaloacetate (Utter and Kurahashi, 1954). This procedure is a modification of that of Wright and Sanwal (1969). The total volume of the reaction was 500 µl and contained 20 mM oxaloacetate, 20 mM NaH¹⁴CO₃ (0.55 µCi), 1 mM ATP, 10
mM MgCl₂, 0.1 M TRIS-Cl buffer (pH 7.5) and 50 µl of CTAB – treated cells. Oxaloacetate was titrated to pH 7.0 using NaOH. Reactions were started by adding 50 µl of oxaloacetate in a fume hood and stopped after 10 min at 30°C by adding 500 µl of 0.1N H₂SO₄. One drop of octanol was added to each of the vials (to limit foaming) and compressed air was bubbled vigorously for 10 min to remove ¹⁴CO₂. The vials were counted with 3.5 ml PCS scintillation fluid. HG163 was used as the wild type control. Protein was assayed using the Lowry method (Geiger and Bessman, 1972) with 1 mg/ml BSA as a standard. This procedure was adapted from Lowry et al. (1951).

2.3 ATP synthase enzyme activity

2.3.1 Preparation of inside out vesicles

Inside out vesicles of wild type and mutant strains were prepared by inoculating 20 ml of overnight culture into two litres of Minimal Media A containing 0.3% glucose and 0.25% casamino acids. Flasks were incubated at 37°C while shaking overnight at 250 rpm. Cultures were centrifuged at 2,700 x g for 15 minutes at 4°C. Pellets were suspended in cold 50 mM Tris (pH 7.8) containing 5 mM MgSO₄, centrifuged again, and resuspended in cold buffer. The pellets were washed twice with cold 0.8% NaCl before centrifuging at 2,700 x g for 15 minutes at 4°C. Pellets collected were resuspended in ice-cold Tris-Mg EDTA buffer (50mM Tris and 5mM MgSO₄, containing 1 mM EDTA). For every 1 gram of pelleted cells, 10 ml of cold Tris-Mg EDTA buffer was added. The cells were passed through a French Press at 10,000 psi and centrifuged at 11,000 x g for 15 minutes at 4°C. Supernatants were collected and centrifuged at 17,640 x g for 1 hour at 4°C in a 60Ti rotor using a Beckman ultracentrifuge. Each pellet was resuspended in 2
ml ice-cold Tris-Mg EDTA buffer, homogenised with a hand held glass (JENCONS model) homogeniser before storing at -70°C.

2.3.2 ATP synthase assays

The ATP synthase reaction was measured by hydrolysis of ATP to yield inorganic phosphate (Pi) and ADP. Pi was then measured by the reaction with ammonium molybdate to produce ammonium phosphomolybdate. Phosphomolybdate complexes were measured by converting them to molybdenum using ANSA reagent (1-amino-2 naphthol-4 sulfonic acid containing sodium bisulfite and sodium sulfite) (Fiske and Sunnarow, 1925).

Phosphate free or acid washed tubes were used for the reactions. Three sets of reactions were carried out: with Mg^{2+}; without Mg^{2+} (control) and with Mg^{2+} plus ATP synthase inhibitor, DCCD (1,3-dicyclohexylcarbodiimide). Reaction tubes contained 0.78 ml 50 mM TRIS-sulphate buffer, pH 7.8 containing 1mM EDTA, 75 µl 0.04 M MgCl₂ and 0.1 ml membranes (1: 100 dilution). Tubes were incubated at 37°C for 5 min. The reactions were started with 50 µl of 0.1 M ATP and incubated for 10 min. The reactions were stopped after 10 min with 1 ml of 10% TCA (Trichloroacetic acid) and placed on ice. To control tubes, TCA was added before ATP and DCCD (stocks were 10 mM in methanol). A control experiment with 10 µl methanol instead of DCCD was also carried out. The tubes were centrifuged at 13,000 x g for 10 min in a Beckman high-speed centrifuge model J2-21.

The amount of Pi generated in each experimental tube was interpolated from a standard graph of A₆₆₀ against Pi. Protein concentration (mg/ml) of the membranes was
determined by Lowry assay and specific activity of ATPase in membranes was calculated in μmoles·min⁻¹·mg⁻¹.

2.4 Reverse transcriptase real time polymerase chain reaction (RT-rtPCR) to measure mRNA expression during bacterial cell growth.

2.4.1 RNA extraction

Samples of 1 ml were collected from *Escherichia coli* cultures. Throughout this study, different methods of RNA extractions were used. First, we used two kits: (1) RNAqueous (small-scale Phenol-Free total RNA isolation kit) and (2) RiboPure Bacteria (kit specifically design for RNA extraction in prokaryotes, which uses Zirconia Beads to disrupt cell structure) from Ambion Inc. (www.ambion.com). The second kit was a newly developed RNA extraction kit from Ambion. However, the quantity and quality of RNA extracted from both kits were extremely poor, so we used an RNA extraction method developed by Dr. George Mackie (1989) as described in appendix I.

2.4.2 RNA quality and quantity determination

The purity and integrity of RNA extracted was calculated using the ratio of absorbance read at 260nm and 280nm (A₂₆₀:A₂₈₀ ratio). Five μl of RNA was dissolved in 995 μl DEPC water. Good RNA quality is observed when A₂₆₀:A₂₈₀ ratio lies between 1.8-2.1 (http://core.img.cas.cz). Five μl of RNA extracted was also run on a 1% denaturating agarose gel (containing MOPS [3-(N-morpholino) propanesulfonic acid] and formaldehyde) to determine its integrity. Concentration of RNA (μg/ml) was calculated using the A₂₆₀nm. RNA (1μg) of mutants and wild type were each treated with
RNase-free DNAase enzyme (1 unit) (From Invitrogen inc.) to digest any bacterial DNA present in the RNA sample.

2.4.3 cDNA synthesis

Complementary DNA (cDNA) was synthesised using Superscript™ III Platinum® two-Step quantitative RT-PCR kit (Invitrogen). The two-Step system involved (i) the synthesis of cDNA (ii) quantitative PCR performed in another tube. Reverse transcriptase (RT) enzyme mix contained Superscript™ III reverse transcriptase and RNaseOUT™ Recombinant ribonuclease inhibitor. The RT enzyme has been engineered to reduce RNase H activity as well as to increase its thermal stability (Kotewicz M et al., 1985). It is also not inhibited by ribosomal and transfer RNA, thus allowing synthesis of cDNA from total RNA. RNaseOUT is an RNase inhibitor protein that protects the RNA from being degraded from ribonuclease contamination. The optimised RT buffer for cDNA synthesis contains random RNA hexamers, 10 mM MgCl$_2$ and dNTPs. For cDNA synthesis, to tubes containing 0.386 ug of DNAase-treated RNA, 5 µl RT buffer and 0.75 µl RT enzyme mix were added. The tubes were gently mixed before being incubated in a Perkin Elmer PCR machine (cDNA synthesis program: 25°C for 10 min., 48°C for 50 min and 85°C for 5 min). The tubes were chilled on ice before adding 0.5 µl RNase H to each tube followed by incubation for 20 min at 37°C. Complementary DNA was then stored at -20°C. RNase H was added to remove the RNA template from cDNA:RNA hybrid molecules after first-strand synthesis to increase quantitative PCR sensitivity.

2.4.4 Lux primers
Custom-designed LUX fluorogenic primers (Invitrogen) were used for quantitative PCR. LUX (or Light Upon eXtension) primers consist of a pair of primers consisting of a forward fluorogenic primer with a fluorophore attached to its 3’ end, as well as an unlabeled reverse primer. The fluorogenic primer has a short sequence tail of 4 - 6 nucleotides on the 5’ end that is complimentary to the 3’ end of the primer. The resulting hairpin secondary structure (Fig. 8) provides optimal quenching of the fluorophore.

![The LUX effect](http://www.invitrogen.com/content.cfm?pageid=3978#HowLuxWorks)

Fig. 8: Quenching of the fluorophore (represented as green circle) of the LUX forward primer. When released from the hairpin form and incorporated into the double-stranded PCR product, there is dequenching of fluorophore that causes an increase of relative fluorescence of up to 10-fold. This figure was taken from Invitrogen web site: (http://www.invitrogen.com/content.cfm?pageid=3978#HowLuxWorks)

When the primer is incorporated into the double-stranded PCR product, quenching of the fluorophore decreases and the fluorescence intensity increases by up to 10-fold. The fluorogenic LUX primer is labelled with FAM (6-carboxy-fluorescein) dye (Fig. 8). It has excitation/emission wavelengths of 490/520nm. In this study, we used oHG177 (CGCGGTAAATCTATGAGCGTTGTCGG), a 27 base primer homologous to
the 5’ region of $pckA$, that was labelled by FAM and oHG178 (CGCATTTCACTGCTCCTAGCC), a 22 base unlabelled primer for the $pckA$ gene. The PCR product generated using those two primers was 93 base pairs long.

2.4.5 Quantitative PCR

For quantitative PCR, DNA Engine Opticon® 2 Real-time PCR Detection system (by MJ research/Biorad research) was used. Initially we started with a one-step system RT-PCR kit called Platinum® Quantitative RT-PCR Thermoscript from Invitrogen. This kit consists of a high temperature reverse transcriptase (avian, ribonuclease H deficient provides highly specific and efficient cDNA synthesis at elevated temperatures) and an automatic hot-start Platinum® Taq DNA polymerase. The one-step system allows for both the generation of cDNA and subsequent amplification of the cDNA in one tube. During cDNA synthesis, a mixture of monoclonal antibodies inhibits Taq activity. When cDNA synthesis is completed, reverse transcriptase enzyme is denatured during the “denaturation” step of PCR thus restoring full function of Taq activity. The two-step method consists of Invitrogen’s Superscript™ III Platinum® two-Step quantitative RT-PCR kit. This kit consist of Superscript™ III reverse transcriptase enzyme which provides highly specific and efficient cDNA synthesis at elevated temperatures as well as an automatic hot-start Platinum® Taq DNA polymerase with integrated UDG (uracil DNA glycosylase) carry over prevention technology. UDG and dUTP in the buffer prevent reamplification of carry-over PCR product between reactions. The presence of dUTP ensures that any amplified DNA will contain uracil while UDG removes uracil residues from single or double stranded DNA, thus preventing dU-containing DNA from serving as template in future PCRs. The Taq DNA polymerase (60 U/ml) buffer
consisted of 40 mM Tris-HCl (pH 8.4), 100 mM KCl, 6 mM MgCl₂, 400 μM dGTP, 400 μM dATP, 400 μM dCTP, 800 μM dUTP, 40 U/ml UDG, and stabilizers. For the quantitative PCR reactions, low profile tubes (recommended for DNA Engine Opticon® 2 Real-time PCR Detection system from Biorad) were used. In each tube 0.25 μg cDNA was added followed by 12 μl Taq buffer, 0.3 μl of 10 mM oHG177, 0.3 μl of 10 mM oHG178 and the volume was made up to 25 μl by the addition of water. The tubes were well mixed, centrifuged lightly and placed on the 96 well rack of the DNA Engine Opticon® 2 Real-time PCR Detection system. Each sample was run in triplicate. Conditions used for the setting of quantitative PCR resulted from the modification of the Ambion® protocol where the qPCR step and cycle have been optimized as shown in Appendix 2.

2.4.6 Normalising real-time RT-PCR data

The question of how to analyse quantitative real time RT-PCR data has still not been answered to universal satisfaction. Several methods (Bustin A, 2005) have been generated for normalising real time RT-PCR data, among which two methods were used in this study. The first method known as the relative (or comparative threshold [Ct]) method is used to compare the changes in steady-state mRNA levels of the target gene with one or several endogenous reference genes. This method is considered a simple and most popular method for internally controlling for error in real time RT-PCR for eukaryotic mRNAs. The second method used in this study is the standard curve method (or absolute method). This method compares expression of mRNA levels to an external standard.

2.4.6.1 Relative method
The comparative C_t method involves normalising the C_t values of the gene of interest to an appropriate endogenous housekeeping gene. The amplification efficiencies of the target and the endogenous reference must be approximately equal for the relative method to be valid. It is based on the expression levels of a target gene versus a housekeeping gene. To calculate the expression of a target gene in relation to an adequate reference gene various mathematical models are established (Bustin, 2004) and the model that I started using for quantification was derived from the paper published by Livak et al. (2001). The equation is as followed:

Fold change in gene expression

$$2^{-\Delta\Delta C_t}$$

$$= 2 - [(C_{t\text{, pckA}}_{\text{time x}} - C_{t\text{, 16sRNA}}_{\text{time x}}) - (C_{t\text{, pckA}}_{\text{time 0}} - C_{t\text{, 16sRNA}}_{\text{time 0}})]$$

The cycle threshold (C_t) is the first cycle in which there is a significant increase in fluorescence above the background or a specified threshold and it is determined from the primary curve. The smaller the C_t value, the larger the amount of specific mRNA is present. In my experiment, there is no RNA extracted at time zero as RNA level extracted at that time is too low. The earliest time for RNA extraction is 1 hour and that time is considered as (time 0) in the equation. Once the fold change expression is obtained for each sample, mean fold change in gene expression versus time was plotted. However, when this method was tried using $pckA$ as the target gene and rrn (16srRNA) as the housekeeping gene, the amplification efficiencies were not constant and varied between the different time points as well as between the strains, leading to unreliable results. If the expression of the housekeeping gene is variable, then the noise of the assay
is increased leading to difficulty in detecting changes in mRNA expression of the target gene (Dheba et al., 2006).

2.4.6.2 Absolute method

For the absolute method, a standard curve was generated using the plasmid pHG51. pHG51 plasmid contains the pckA gene and consists of 4750 base pairs. A series of three serial dilutions (10-fold) ranging from 30.4 nmol to 30.4 pmol were prepared. Each serial dilution (2.5 µl) was added to low profile tubes containing 12 µl Taq buffer, 0.3 µl of 10 mM oHG177, 0.3 µl of 10 mM oHG178 and the volume was made up to 25 µl with water. For each serial dilution, triplicate tubes were prepared. The tubes were well mixed, centrifuged lightly and placed on the 96 well rack of the DNA Engine Opticon® 2 Real-time PCR Detection system along with sample tubes. Conditions used for quantitative PCR resulted from the modification of the Ambion® protocol where the qPCR step and cycle have been optimised as shown in Appendix 2. A plot of C_t vs. the logarithm of concentration resulted in a straight line, the standard curve, fitted by linear regression. Each time quantitative PCR was performed on samples, a standard curve was generated and data were normalised using the corresponding standard curve. Positive controls (corresponding to the addition of known concentrations of plasmid) were also added to the quantitative PCR to determine the efficiency of qPCR as well as to validate the standard curve results. PCR products were run on 1% agarose gels to check integrity of the qPCR product.
2.5 Molecular biology methods

2.5.1 PCR amplification

Mutant as well as wild type chromosomal DNA were amplified using oHG177 and oHG178 primers specific to \textit{pckA}. The expected size of the fragment was 93 bp. The PCR mixture consisted of 10 \(\mu\)l of 10X PCR buffer (100 mM Tris-HCl, pH 9.0, 15 mM MgCl\(_2\) and 500 mM KCl) (Amersham. Inc), 8 \(\mu\)l of 2.5 mM deoxynucleotides, 15 ng of DNA, 50 pmoles of primers, 1\(\mu\)l of Taq polymerase (5000 units/ml) and sterile water to a total volume of 100 \(\mu\)l. The PCR incubation cycle was as follows: denaturation at 94\(^\circ\)C for 1 min, annealing at 55\(^\circ\)C for 1 min and extension reaction at 72\(^\circ\)C for 1 min. The cycle was repeated 35 times, followed by 72\(^\circ\)C for 5 min and held at 4\(^\circ\)C.

2.5.2 DNA electrophoresis

2.5.2.1 Agarose gel Electrophoresis – 1%

DNA samples (30 \(\mu\)l) mixed with 4 \(\mu\)l agarose loading buffer (36% urea, 0.5% bromophenol blue, 0.5% xylene cyanol green) were loaded on a 1% agarose gel containing 0.1 \(\mu\)g/ml ethidium bromide and then electrophoresed. The 100 bp DNA ladder and the 50 bp DNA ladder (1.0 \(\mu\)g/ml) from Invitrogen Inc. were used as DNA molecular weight standards. DNA fragments were separated at a constant voltage of 75 V in 1x TBE (0.09 M Tris, 0.5 mM EDTA (pH 8.0), 0.09 M H\(_3\)BO\(_3\)) buffer, pH 8.3, containing 0.1 \(\mu\)g/ml of ethidium bromide. DNA fragments were visualized with a UV transilluminator with 310 nm ultraviolet light and photographed using Polaroid type 55 film (Polaroid Corporation, Cambridge, MA) and a Kodak Wratten No. 2 filter.
2.5.2.2 Denaturating Agarose Gel Electrophoresis

Denaturating Agarose gels were prepared using 1% agarose, 10 ml of 10X MOPS running buffer (400 mM MOPS, pH 7.0, 100 mM sodium acetate and 10 mM EDTA) and 18 ml of 12.3 M formaldehyde (Ambion RiboPure™-Bacteria instruction manual). One µg of each RNA sample (containing 5 µl 10X MOPS running buffer, 9 µl of 12.3 M formaldehyde and 25 µl formamide) was heated at 55°C for 15 min in 1X MOPS running buffer. Loading dye (Sigma-Aldrich) containing 0.5 µg/ml ethidium bromide and 10 µl formaldehyde was added to the RNA samples. The samples were loaded and allowed to electrophorese at 5 V/cm until the bromophenol blue (fast-migrating dye) has migrated one-half to two-thirds of the length of the gel. The gel was visualised using a UV transilluminator with 310 nm ultraviolet light and photographed using Polaroid type 55 film and a Kodak No. 2 filter.

2.5.2.3 SDS acrylamide gel electrophoresis

Protein samples were run in 10% acrylamide SDS gels as described by Laemmli, (1970).

2.5.3 Plasmid DNA purification

ER2429 cells contained pACYC184 plasmid (Tet'R) while MM294 cells contained pDJK35 (atpG⁺, Cam'R) plasmid. One colony from each strain was inoculated into tubes containing 5 ml LB containing selective antibiotic. Tetracycline (20 µg/ml) or chloramphenicol (25 µg/ml) was added and cells were allowed to grow approximately 8 hours at 37°C while shaking at ca. 250 rpm. Each culture (250 µl) was inoculated into two conical flasks containing 250 ml LB with selective antibiotic and incubated
overnight at 37°C while shaking vigorously. The cells were harvested by centrifuging at 2,500 x g for 5 min at 4°C and the pellet was used for plasmid isolation as per QIAfilter Plasmid Maxi protocol (QIAgen Plasmid Purification Handbook, 1999) (www1.qiagen.com/HB/plasmid purification).

2.5.4 Electroporation

2.5.4.1 Preparation of competent cells for electroporation

Chemical transformation was found to be unsuccessful for transfer of plasmids to the atpG mutants (Madhavan, 2002 and this work); therefore, electroporation was used. One liter of LB was inoculated with 1% overnight inoculum and grown to mid-log phase with shaking at 37°C. The different bacterial strains used in this study as competent cells for electroporation were prepared as described by Madhavan (2002). The culture was centrifuged at 2,500 x g for 15 min and the pellet was resuspended gently in 1 liter of ice-cold 10% glycerol. The cells were centrifuged again for 5 min at 5000 rpm. The pellet thus obtained was washed four times in 10% glycerol and each time the volume of glycerol was reduced by half. The last pellet was resuspended in 4 ml of 10% glycerol. Aliquots of competent cells (40 µl) were dispensed into cold sterile microfuge tubes, frozen immediately in a -70°C methanol bath and stored at -70°C.

2.5.4.2 Electroporation and plating

Competent cells were allowed to thaw gently on ice. 2 µl of the appropriate plasmid was added to the 40 µl of competent cells and kept on ice for 1 min. The mixture was transferred into a chilled sterile electroporation cuvette (Bio-rad laboratoried, Inc. Hercules, CA), and the cells were exposed to a voltage pulse of 1.8 kV...
using the \textit{E.coli} Pulser (Bio-rad laboratories, Inc. Hercules, CA). After electroporation, 1 ml of SOC medium (American Biorganics, Inc. Niagara falls, NY) was immediately added to the cuvette and mixed well by pipeting several times up and down the cuvette. The cells in SOC solution were then transferred into sterile 1.5 ml microfuge tubes and placed on a shaker at 37°C for one hour. Following the incubation, the tubes were centrifuged at 11,000 \(x\) g in an Eppendorf 5415D centrifuge and the pellet obtained was suspended in 100 \(\mu l\) SOC, plated on appropriate antibiotic containing plates and incubated at 37°C for 24 h.

2.6 Detecting formation of the electrochemical \(H^+\) gradient.

2.6.1 Fluorescence quenching

Fluorescence quenching of acridine orange was used to measure \(H^+\) flux in inside-out vesicles of wild type (HG163), mutants (HG203, HG 205, HG206) and strains with vector plasmid pACYC184 or \(atpG^+\) plasmid pDJK35. Inside-out vesicles of these bacterial strains were made as described in Section 2.3.1 and protein concentrations were measured by the Lowry method (Lowry \textit{et al.} (1951). Volumes of membranes corresponding to 300 \(\mu g\) of protein were suspended in 3 ml of 10 mM Tricine choline buffer (pH 8.0) that contained 140 mM KCl, 5 mM MgCl\(_2\), 1 \(\mu g/ml\) valinomycin and 1 \(\mu M\) acridine orange (Sigma-Aldrich). Tricine choline stock (100 mM) was made by dissolving tricine in 50 ml double deionised water and pH was adjusted to 8.0 using 50% w/w choline base. Valinomycin (100 \(\mu g/ml\)) was prepared in 99% ethanol. Acridine orange (37 \(\mu g/ml\)) was freshly prepared in double deionised water. Acridine orange
penetrates the membrane vesicles and emits fluorescence at 530 nm with an excitation of 490 nm. Once protonated, acridine orange no longer emits fluorescence.

2.6.2 Fluorescence measurements

In a cuvette with stirrer, 3 ml of 10 mM tricine choline buffer was added followed by bacterial inside out vesicles (300 µg of membrane protein). Valinomycin (100 µg/ml) and acridine orange (100 µM) were also added to the cuvette. The cuvette was placed in the Hitachi F-2500 FL spectrophotometer and allowed to stabilise for 41 seconds before 4 µl of 0.25 M ATP was added and the experiment was allowed to run up to 120 sec. Blank samples contained all the reagents as in the sample cuvette except membrane protein. The software used to set the Hitachi F-2500 FL spectrophotometer was “FL Solution”. Time courses of quenching were recorded with excitation at 490 nm and emission at 530 nm. The excitation and emission slits were both set at 5.0 nm. Response time was 0.08 sec.

2.6.3 Generation of data

The data from the Hitachi F-2500 FL spectrophotometer (in excel format) were transferred to Graph Prism 4.0 software where curves were fitted using non-linear regression.
CHAPTER THREE

3.0 Results

3.1 Growth and phenotypes of atpG mutants and wild type HG163

3.1.1 Phenotype of atpG mutants and wild type HG163

The phenotypes of the bacterial strains used in this study were verified every time a growth curve experiment was performed. Bacterial strains were plated on minimal medium A (MM) containing glucose, succinate or pyruvate respectively. The data obtained are shown in Table 2 below. Wild type strain HG163 (pps) grew on MM plates containing either glucose or succinate as sole carbon sources but did not grow on MM plates that contained pyruvate only. The atpG mutant strains grew on MM plates that contained glucose only but not on MM plates that contained succinate or pyruvate as sole carbon sources.

All bacterial strains were also plated on antibiotic plates containing kanamycin. As expected, the wild type strain HG163 did not grow on kanamycin plates while atpG strains did grow on them (Thorbjarnadottir et al., 1978). HG203, HG205 and HG206 grew faster on kanamycin plates compared to HG208, HG209 and HG210.
3.1.2 Growth of atpG mutants and wild type HG163

Growth curves for LB medium were generated as described in Materials and Methods (See section 2.1.3). Briefly, culture flasks containing LB medium were inoculated at an OD_{600nm} of 0.001 with bacterial strains (HG163, HG203, HG205 and HG206). Growths of atpG mutants and wild type HG163 were monitored up to 18 hours and Log OD_{600nm} was plotted as a function of time as shown in Figure 9.

Table 2: Growth of wild type (HG 163) and atpG mutants (HG203, HG205, HG206, HG208, HG209 and HG210) on minimal media A (MM) containing glucose(G), succinate(S), pyruvate(P) and LB with kanamycin (25ug/ml).

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>phenotype</th>
<th>MM + G plate</th>
<th>MM+S plate</th>
<th>MM+P plate</th>
<th>K plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG163</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HG203</td>
<td>Gro^−</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HG205</td>
<td>Gro^−</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HG206</td>
<td>Gro^−</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HG208</td>
<td>Gro^+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HG209</td>
<td>Gro^+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>HG210</td>
<td>Gro^+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
The results showed that wild type HG163 grew at a faster rate during lag and log phase (Table 3) as compared to all atpG mutants (HG203, HG205, HG206). Further, HG163 had a higher growth yield in stationary phase and the OD_{600nm} was higher than the atpG mutants. It was also observed that HG203 grows slower than HG205 and HG206 during both phases (Fig. 9 and Table 3). However, the growth yield in stationary phase was similar for all three mutants. Therefore, it seems that the atpG mutations have effects on the growth of the bacteria.

Fig. 9: Growth curves of atpG mutants (HG203, HG205, HG206) and wild type HG163. Growth was monitored from 0 hours up to 18 hours after inoculation in LB. The experiments were repeated several times and the figure shows representative data.
Strains HG208, HG209 and HG210 were spontaneous Gro⁺ isolates of Gro⁻ strains HG203, HG205 and HG206, respectively, which had larger colonies. Growth curves for strains HG208, HG209, HG210 and wild type HG163 were generated. As shown before, wild type HG163 grew at a faster rate during log phase as compared to all atpG mutants (HG208, HG209, HG210) (Fig. 10 and Table 3). However, HG209 and HG210 growth yields in stationary phase were higher than HG205 and HG206 and closer to wild type HG163. In addition, it was also observed that HG208 growth yield in stationary phase was lower than that of HG209, HG210 and HG163 (Fig. 10) and Table 3. Therefore, it seems that atpG mutants HG209 and HG210 were different from atpG mutants HG205 and HG206.

The doubling times have been calculated for all the atpG strains and for the wild type strain. The percentage growth yields related to the wild type strain (HG163) were also determined. These data are presented in Table 3. The results demonstrated that the
maximum growth yield reached for HG163 in LB was an OD$_{600\text{nm}}$ of 4.75 while for
atpG mutants maximum growth yield ranged between 0.70 – 3.45 (Table 3).

Table 3: Doubling time (in min), growth yield (OD600) and percentage growth yield of *atpG* mutants and wild type HG163.

<table>
<thead>
<tr>
<th>Bacterial strain</th>
<th>TD (min)</th>
<th>Max Growth yield (OD600nm)</th>
<th>% growth yield (related to wild type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG163</td>
<td>25</td>
<td>4.75 ± 0.23 *</td>
<td>100</td>
</tr>
<tr>
<td>HG203</td>
<td>34</td>
<td>0.70 ± 0.082</td>
<td>15</td>
</tr>
<tr>
<td>HG205</td>
<td>32</td>
<td>0.88 ± 0.059</td>
<td>18</td>
</tr>
<tr>
<td>HG206</td>
<td>30</td>
<td>0.99 ± 0.008</td>
<td>21</td>
</tr>
<tr>
<td>HG208</td>
<td>31</td>
<td>1.0 ± 0.082</td>
<td>21</td>
</tr>
<tr>
<td>HG209</td>
<td>34</td>
<td>2.5 ± 0.24 *</td>
<td>53</td>
</tr>
<tr>
<td>HG210</td>
<td>34</td>
<td>3.45 ± 0.35 *</td>
<td>73</td>
</tr>
</tbody>
</table>

* OD’s greater than 1.0 were determined by diluting cultures 1/10 in LB medium

HG203, HG205 and HG206 grew to lower growth yields (Table 3) compared to HG208, HG209 and HG210 even, though the doubling times were not significantly different. HG208, HG209 and HG210 had growth yields ranging from 21% to 73% of wild type while HG203, HG205 and HG206 had growth yield ranging from 15% to 21% of wild type (Table 3). This indicated that the Gro$^+$ derivatives (HG208, HG209 and HG210) had larger colonies than the original *atpG* mutants (HG203, HG205 and HG206), due to increased growth yields, that were still not as high as for wild type.
3.2 Pck enzyme activities in *atpG* mutants and wild type HG163

Pck specific activities of *atpG* mutants (HG203, HG205, HG206) and wild type (HG163) were measured using ATP-dependent exchange of 14C between NaH14CO$_3$ and oxaloacetate as described in Materials and Methods (section 2.3.2). The Pck enzyme specific activities were monitored for nine hours following incubation of LB media with their respective 0.001 OD$_{600nm}$ bacterial strain. The results are shown in the graph below.

The results showed that in wild type, Pck enzyme activity started to increase by 5 hours after inoculation, which corresponded to the onset of early stationary phase as indicated by growth curve in Fig. 11. By nine hours, Pck enzyme specific activity in wild type reached a maximum of $0.062 \pm 0.0005 \mu$mol·min$^{-1}$·mg$^{-1}$. Previous experiments have shown that Pck specific activities reached a peak at 8 to 9 hours on this medium and declined slightly thereafter (Madhavan, 2002). For the *atpG* mutants, as in wild
type, at the onset of stationary phase (which corresponded to 5 hours on growth curve), there was an induction in Pck enzyme specific activity. However, the Pck specific activities of HG203, HG205 and HG206 were significantly lower compared to HG163. HG203 has a maximum Pck Specific activity occurring at 5 hours (0.0160 ± 0.0003 µmol·min⁻¹·mg⁻¹). HG205 and HG206 Pck Specific activities reached a maximum by 7 and 9 hours (0.0165 ± 0.0021 µmol·min⁻¹·mg⁻¹ and 0.0155 ± 0.0021 µmol·min⁻¹·mg⁻¹) (Fig. 11). These results suggest that mutation in *atpG* affects the Pck levels and that *atpG* may be a factor in the induction during stationary phase.

![Fig. 12](image.png)

Fig. 12: Pck enzyme specific activity (µmol·min⁻¹·mg⁻¹) in *atpG* mutants and wild type, HG163. Pck Specific Activity was measured as a function of time starting from 0 hours to 9 hours.

Pck specific activities of Gro⁺ suppressors of *atpG* mutants (HG208, HG209, HG210) were significantly higher as compared to HG203, HG205 and HG206; although, lower than for wild type, HG163. HG208 and HG210 had maximum Pck Specific Activities of 0.0315 ± 0.0007 µmol·min⁻¹·mg⁻¹, while HG209 had Pck Specific Activity...
of $0.0450 \pm 0.0005 \mu\text{mol-min}^{-1}\cdot\text{mg}^{-1}$ (Fig. 12). The average Pck enzyme specific activities of HG203, HG205 and HG206 were approximately 21% compared to wild type HG163 (Fig. 12). However, HG208 and HG210 had Pck specific activities around 51% of wild type Pck specific activity and HG209 was around 73% of wild type, HG163 (Fig. 12). Thus, the Pck enzyme activity in the Gro$^+$ suppressors (HG208, HG209, HG210) was for some unknown reason being partially restored compared to the original atpG mutants, HG203, HG205 and HG206.

3.3 ATP synthase Specific Activity

ATP synthase specific activities in wild type HG163, atpG mutants and Gro$^+$ suppressors were determined. This was important as the Gro$^+$ suppressors (HG208, HG209 and HG210) had higher levels of Pck enzyme specific activity compared to the original Gro$^-$ atpG mutants (HG203, HG205 and HG206). ATP synthase specific activities in wild type and atpG mutants are summarised in the graphs below (Fig. 13 A-B). For the wild type HG163, the results were as expected with a high ATP synthase specific activity as shown by Fig. 13. The average ATP synthase specific activity in wild type was $0.23 \pm 0.035 \mu\text{mol} \cdot \text{mg}^{-1}$ protein. For HG203, HG205 and HG206, the level of ATP synthase specific activity was the lowest. HG203 had a specific activity of $0.0067 \pm 0.0012 \mu\text{mol} \cdot \text{mg}^{-1}$. HG205 had a specific activity of $0.0077 \pm 0.0057 \mu\text{mol} \cdot \text{mg}^{-1}$ while HG206 had a specific activity of $0.006 \pm 0 \mu\text{mol} \cdot \text{mg}^{-1}$ (Fig. 13A).
From the graph in Fig. 13B, ATP synthase activity of Gro\(^+\) suppressors, HG208, HG209 and HG210 was higher than for the original \(atpG\) mutants, HG203, HG205 and HG206. HG208 had a specific activity of \(0.018 \pm 0.0017 \, \mu\text{mol}\cdot\text{mg}^{-1}\) and HG209 had a specific activity of \(0.025 \pm 0.0098 \, \mu\text{mol}\cdot\text{mg}^{-1}\) while HG210 had a specific activity of \(0.019 \pm 0.0006 \, \mu\text{mol}\cdot\text{mg}^{-1}\) (Fig. 13B). Thus, ATP synthase specific activity in Gro\(^-\) \(atpG\) mutants ranged from 0.006 to 0.007 \(\mu\text{mol}\cdot\text{mg}^{-1}\), while Gro\(^+\) suppressors ranged from 0.018 to 0.025 \(\mu\text{mol}\cdot\text{mg}^{-1}\). These results indicate that Gro\(^+\) suppressors still have significant defects in ATP synthase activity since wild type ATP synthase activity was 10 fold higher.
3.4 Real Time Reverse transcriptase PCR assay of pckA mRNA levels

Since we found that atpG mutants have lower Pck activities, lower growth rates and yields, using real time RT-PCR, we assessed whether pckA is affected by atpG mutations at the transcriptional level using those Gro− atpG mutants (HG203, HG205, HG206) and Gro+ atpG mutants that had their Pck enzyme activity slightly reverted (HG208, HG209 and HG210).

3.4.1 RNA quality

Samples were taken from bacterial cultures every 2 hours after the 1st hour of growth. One ml of bacterial culture was taken from each flask for RNA extraction procedure (See section 2.4.1). Extraction of RNA used the method of Mackie (1989, Appendix 1). The quality of RNA extracted was determined by two methods. The first method was to use OD values read at 260nm and 280nm (A$_{260}$:A$_{280}$ ratio). Good RNA quality is observed when the A$_{260}$:A$_{280}$ ratio lies near 2.0 and a range between 1.8 – 2.1 is considered acceptable (http://core.img.cas.cz). All of the RNA extracted had ratios in the range of 1.85 – 2.0. The second method was to electrophorese the RNA extracted on 1% denaturating agarose gel (containing MOPS and formaldehyde as described in methods section 2.5.2.2). One of the denaturating agarose gels is depicted below (Fig. 14). RNA samples were extracted from HG163, HG203, HG205 and HG206.
In all of the RNA samples loaded on this gel, two ribosomal RNA bands were highly visible. They were the 16S ribosomal RNA (labelled 16S on the gel) and the 23S ribosomal RNA (labelled 23S) (Fig. 14). The size of the 16S RNA was approximately 1.4 kbp (usually size of 16S RNA is 1.5 kbp) while that of the 23S RNA was around 2.8 kbp (usually the size is around 3.0 kbp). From a denaturating agarose gel, the quality and integrity of extracted RNA can be determined by the quality of the bands and the intensity of the 16S band related to the 23S bands (Mackie, 1989). Usually RNA is considered intact when the intensity of the 23S rRNA bands seems to be twice that of the 16S rRNA band. In all the five lanes, the bands were sharp, clear and intense without smearing or background fluorescence in the lanes. The intensity of the 23S bands seemed to be twice that of the 16S bands. Starting from the left side of the gel, the first lane (lane 1) contained RNA extracted from wild type HG163. This RNA sample was not treated with RNase-free DNase enzyme. In this lane (1), bacterial DNA could be seen present as a high molecular weight band near the well. Lane 2-5 contained RNA samples that were treated with RNase free DNase enzyme. In all these lanes, no bacterial DNA was present, thus demonstrating that the DNA was being removed from
the samples by the RNase-free DNAse enzyme. For mutants HG208, HG209 and HG210, RNA samples were also loaded on acrylamide gel and the results obtained were similar to the denaturating agarose gel shown above.

3.4.2 RNA quantity (concentration)

Concentration of RNA was calculated using the OD value read at 260nm (A_{260} reading, see Materials and Methods). RNA (1μg) of mutants and wild type were each treated with RNase-free DNAase enzyme to digest any contaminating bacterial DNA. The range of concentrations RNA extracted ranged from 200 to 3000 μg/ml. As expected, higher amounts of RNA were extracted from wild type, HG163 compared to the $atpG$ mutants, due to higher cell densities. However, the amount of RNA was normalized so that the same amount of RNA was treated with RNase-free DNAse enzyme and reverse transcriptase.

3.4.3 Levels of pckA mRNA expression in atpG mutants and in wild type HG163

The levels of $pckA$ mRNA expression in wild type HG163 and $atpG$ mutants were determined by real time, reverse transcriptase PCR. From RNA extracted, cDNA was synthesised and used quantitatively to measure expression of $pckA$ mRNA as described in Material and Methods (Section 2.4.3). Typical raw data (Fig. 15) and standard curve (Fig. 16) are shown, using $pckA^{+}$ plasmid, pHG51. The plasmid was linearized by digesting it with Xho I restriction enzyme. The concentrations of linearized plasmid DNA used for the standard curves were 30400, 3040, 304 and 30.40 pmol.
These standards were used in triplicate for every experiment and a plot of C_t value against fluorescence was generated for each standard as shown below in Fig. 15.

![Graph showing fluorescence versus time for real-time RT-PCR](image)

Fig. 15: Typical standard data for real-time RT-PCR. Curves show fluorescence versus time.

The standard curves generated by DNA Engine Opticon® 2 Real-time PCR Detection system in these runs produced linear results as shown by the graph generated in Fig. 16. The lowest R^2 value for the line of best fit for any experiment was 0.996. Graph produced was $C_{(t)}$ values against log concentration of $pckA$ mRNA. In addition, we used known amounts of positive controls that were run alongside samples to determine the accuracy of the measurements. The anti-logs of concentrations of samples were then calculated and used to plot concentration of $pckA$ mRNA versus time using Graph Prism 4.0.
The \textit{pckA} mRNA levels were assessed in wild type HG163 and mutants (HG203, HG205 and HG206) (Fig. 17). The results showed that expression of \textit{pckA} mRNA in the wild type HG163 started as early as 3 hours after inoculation, increased substantially at 5 hours, and peaked at 7 hours (Fig. 17). This time corresponded to early stationary as shown in Fig. 9. However, by 9 hours \textit{pckA} mRNA expression in HG163 started to decrease. This decrease in \textit{pckA} mRNA expression could be due to cessation of synthesis and RNA dilution as cells grow slowly in early stationary phase.
In the *atpG* mutants (HG203, HG205 and HG206), *pckA* mRNA expression starts at a lower rate at 3 hours but subsequently the level of expression is not significantly different from wild type (Fig. 17). By 9 hours, the expression of *pckA* mRNA decreased in all three *atpG* mutants. The highest expression of *pckA* mRNA occurred at 7 hours in HG203, HG205 and HG206. Growth was continued up to 11 hours in wild type and *atpG* mutants to see the expression of *pckA* mRNA expression in mid-stationary phase. It was observed that by 11 hours, in the *atpG* mutants, *pckA* mRNA expression decreased more sharply than in the wild type (Fig. 17).
Similarly, pckA mRNA expression was assessed in Gro+ suppressors of atpG mutants (HG208, HG209, HG210) and in wild type HG163 (Fig. 18). The wild type strain HG163 demonstrated similar pckA mRNA expression pattern as previously shown. In the atpG mutants (HG208, HG209 and HG210), pckA mRNA started slowly at 3 hours and peaked at 5 to 7 hours. Subsequently the expression of pckA mRNA decreased somewhat (Fig. 18). The expression pattern was not significantly different from that found for HG203, HG205 and HG206.

These results suggest that there is no major difference in pckA mRNA expression between Gro-, atpG mutants, Gro+ suppressor mutants and wild type. This leads us to believe that the regulation of pckA by atpG or by its metabolic activity is not transcriptionally controlled but probably post-transcriptionally regulated.
3.5 Fluorescence quenching of Acridine orange as a measure of hydrogen ion flux in \textit{atpG} isolates.

It has been shown that \textit{atpG} mutants have defects in ATP-dependent proton pumping (Shin \textit{et al.}, 1992). Since this defect could be responsible for the Pck− phenotype by some mechanism, ATP dependent proton pumping was determined in the \textit{atpG} isolates of Madhavan (2002).

Plasmid pDJK35 (\textit{atpG}+, Table 1) was shown to complement the Atp−, Suc−, kanR, Gro− and Pck− phenotypes of the \textit{atpG} isolates, HG203, HG205 and HG206 (Madhavan, 2002). ATP-dependent proton pumping was also determined for wild type, HG163 and for strains HG203, HG205 and HG206 with plasmid pDJK35 and with the plasmid vector, pACYC184, as controls.

3.5.1 \textit{Complementation of bacterial strains with vector plasmid and atpG}+ plasmid

Calcium-dependent transformation was unsuccessful for the \textit{atpG} mutants (Madhavan, 2002 and this work). Therefore, pDJK35 and pACYC184 (Table 1) were electroporated into the \textit{atpG} mutants and into wild type. The vector plasmid expresses tetracycline and chloramphenicol drug resistance while pDJK35 expresses only chloramphenicol drug resistance. Relevant phenotypes are shown in Table 4.
Table 4: Growth of bacterial strains on selective antibiotics plates.

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>LB plates containing chloramphenicol</th>
<th>LB plates containing tetracycline</th>
</tr>
</thead>
<tbody>
<tr>
<td>HG163</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HG203</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HG205</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HG206</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HG163/pACYC184</td>
<td>NT</td>
<td>+</td>
</tr>
<tr>
<td>HG203/ pACYC184</td>
<td>NT</td>
<td>+</td>
</tr>
<tr>
<td>HG205/ pACYC184</td>
<td>NT</td>
<td>+</td>
</tr>
<tr>
<td>HG206/ pACYC184</td>
<td>NT</td>
<td>+</td>
</tr>
<tr>
<td>HG163/pDJK35</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HG203/ pDJK35</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HG205/ pDJK35</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HG206/ pDJK35</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

NT: stands for not tested.

3.5.2 H^+ flux in inside-out vesicles.

Inside-out vesicles were prepared as discussed in section 2.3.1. Volumes of membranes corresponding to 300 µg of protein (Lowry method, section 2.3.1) were used to measure hydrogen ion flux as described in materials and methods (Section 2.6.2).
The results of the fluorescence quenching acridine orange in wild type HG163 and atpG mutants (HG203, HG205 and HG206) are depicted in Fig. 19. As expected, in wild type, ATP synthase in the membrane was functional and thus when ATP was added there was a decrease in fluorescence due to pumping of hydrogen ions inside the membrane vesicles that caused protonation of acridine orange. In the atpG mutants, when ATP was added, there was no quenching of acridine orange. The small increase in fluorescence when ATP was added at 41 seconds in atpG mutants and in wild type, could be due to the intrinsic fluorescence of ATP.

Fig. 19: Fluorescence quenching of acridine orange versus time in wild type HG163, HG203, HG205 and HG206. ATP (0.25 M) was added after 41 seconds. Error bars represent standard errors of the means.
Fig. 20: Fluorescence quenching of acridine orange in wild type HG163 and $atpG$ mutants (HG203, HG205 and HG206) complemented with $atpG^+$ plasmid. ATP (0.25M) was added at 41 seconds. Error bars represent standard errors of the means.

Figure 20 shows fluorescence quenching of acridine orange in inside out vesicles of wild type HG163 and $atpG$ mutants (HG203, HG205 and HG206) that were complemented with $atpG^+$ plasmids. The presence of $atpG^+$ gene restored the functionality of ATP synthase in the mutants.
As expected, addition of plasmid vector pACYC184 did not alter the fluorescence profile in *atpG* mutants or wild type HG163. At 41 sec, when ATP was added there was decreased in fluorescence for HG163/ pACYC184 while for the *atpG* mutants with this vector, no change in fluorescence was observed.

Fig. 21: Fluorescence quenching of acridine orange versus time in wild type and *atpG* mutants (HG205 and HG206) containing vector plasmid pACYC184. ATP (0.25M) was added at 41 seconds. Error bars represent standard errors of the means.
A summary of all the experiments is shown in Fig. 22. This graph shows the change in fluorescence quenching in the atpG mutants as well as atpG⁺ complemented mutants. It also indicates that the plasmid vector did not affect fluorescence quenching.
4.0: Discussion and Conclusions

4.1 Phenotypes and growth of \textit{atpG} mutants

4.1.1 Phenotype of \textit{atpG} mutants

Previously, spontaneous Suc\(^{-}\)Pck\(^{-}\) mutants were isolated from strain HG163 (\textit{pps} \textit{pckA}\(^{+}\)) (Madhavan, 2002). They were found to have pleotropic phenotypes (Gro\(^{-}\), Atp\(^{-}\) and kan\(^{R}\)) typical of \textit{atp} mutants. The mutants were complemented by plasmids containing the \textit{atpG} gene. The complete \textit{atp} operons were sequenced in the mutants and they were found to have frame-shift mutations in the region encoding the C-terminus of the \(\gamma\)-subunit of the F\(_{1}\)F\(_{0}\) Atp synthase (Madhavan, 2002).

When these \textit{atpG} mutants were transduced to \textit{pps}\(^{+}\) using W3350 as a donor (Adhya \textit{et al.}, 1968), they remained Suc\(^{-}\) thus, the Suc\(^{-}\) phenotypes are independent of \textit{pps} and therefore not due to defects in the \textit{pckA} gene. Boogerd \textit{et al.}, (1998) also found that mutations in \textit{atp} genes are Suc\(^{-}\) and suggested that this could be due to uncoupling and disruption of the electrochemical gradient and/or to transport defects. Thorbjarnadothir \textit{et al.}, (1978) found that mutations in \textit{atp} genes could confer resistance to aminoglycoside drugs such as kanamycin. ATP mutants are probably resistant to kanamycin due to an altered electrochemical gradient, thus causing defects in the transport of aminoglycoside drugs into the cell. Hunbert and Altendorf, (1989), also showed that \textit{atpG} mutations in the gamma (\(\gamma\)) subunit of ATP synthase conferred aminoglycoside resistance. Therefore, the phenotypes of the \textit{atpG} mutants (HG203, HG205, HG206) were similar to what has been described for \textit{atpG} mutants by others.
4.1.2 Growth yield and doubling time of atpG mutants.

Wild type HG163 grew at a faster rate and with a higher yield than atpG mutants (Fig.9, 10; Table 3). Downie et al., (1980) have found that atp mutants have lower growth yields and Jensen et al., (1993) also showed that atp mutants have lower growth rates and growth yields. This is because growth yield as described by Jensen et al., (1993) is related to the coupling between growth and catabolism. Their data suggested that E. coli makes use of its ability to respire even if it cannot directly couple respiration to ATP synthesis, and in doing so, E. coli increases substrate level ATP synthesis. Thus, we observed the same reduced growth rates and yields for atpG mutants as others did.

HG203, HG205, HG206 had lower growth yields and growth rates (Gro- phenotypes). However, Gro+ suppressors were isolated from these strains (HG208, HG209 and HG210 respectively) which had higher growth yields (Table 3). Growth rates were not significantly affected in Gro+ suppressors (Table 3).

4.2 Possible reasons for lower expression of pckA in atpG mutants.

Pck enzyme activity in atpG mutants, HG203, HG205 and HG206 were significantly lower (15-21% of wild type, HG163 Pck specific activity). These results confirmed that atpG mutations in E. coli have an effect on Pck specific activity as observed by Madhavan, 2002. Hypotheses were formulated as follows: (i) atpG mutations can alter pckA expression at the transcription level; (ii) atpG mutations alter translation, assembly or stability of PEP carboxykinase. These changes could be due to reduced ATP synthesis, to reduced proton gradient or due to changes in intra-cellular pH. Moreover, Gro+ suppressors (HG208, HG209 and HG210) had Pck specific activities of 51% to 73% of wild type, HG163. The growth yields as shown above and
the increase in Pck specific activity suggested that HG208, HG209 and HG210 are partially reverted to Pck\(^+\). The reason why this is happening is still unknown. However, Boogerd et al., (1998) found that *E.coli atp* deletion strain LM2800, which cannot grow on minimal medium supplemented with succinate as the only carbon source, was able to grow on succinate when left one week on succinate containing minimum media when incubated at 37\(^\circ\)C. This change from Suc\(^-\) to Suc\(^+\) strain was due to a gene inactivation as determined by Boogerd et al., (1998). They found that in these *atp* Suc\(^+\) revertants, there is probably inactivation of *yhiF* gene. Usually in an *atp* mutant, ATP/ADP ratio is low, leading to decrease levels of negative supercoiling of DNA (Jensen and Michelson, 1995). Expression of the *yhiF* gene is enhanced by low levels of negative DNA supercoiling in *atp* mutants. The gene product of *yhiF* represses expression of the C\(_4\)-dicarboxylate transporter (*dstA*) gene, thus possibly preventing *atp* mutants from growing on 4-carbon sources such as succinate due to the transport defect.

The ability of other *atp* mutants to revert partially could explain why some of our mutants (HG208, HG209 and HG210) had growth yields and Pck specific activities partially reverted to wild type, although phenotypically, these mutants were still Suc\(^-\), unlike the revertants reported by Boogerd *et al.* (1998).

4.3 ATP synthase activities in *atpG* mutants.

In *atpG* mutants (HG203, HG205 and HG206), it was confirmed that ATP synthase specific activities were around 3.4\% of wild type HG163. Gro\(^+\) suppressors (HG208, HG209, HG210) also had low ATP synthase specific activities. This suggests that somehow the *pckA* activity was affected indirectly by *atpG*.
Increased glucose metabolism has been demonstrated in \textit{atp} mutants (Jensen and Michelsen, 1992). They also found that during growth on minimal medium containing glucose, there was an increased flow of carbon through the glycolytic pathway and in the TCA cycle in these mutants.

Using transcriptome analysis, Noda \textit{et al.}, (2006) did a DNA array analysis to compare gene expression in \textit{atp} mutants compared to wild type strain. They found out that the expression of genes like \textit{gltA} (citrate synthase), \textit{icdA} (isocitrate dehydrogenase), \textit{sucA} (2-oxoglutarate dehydrogenase E1 component), \textit{sucB} (dihydrolipoamide succinyltransferase component E2), \textit{sucD} (succinyl-CoA synthetase \alpha chain), \textit{aceA} (isocitrate lyase), \textit{aceB} (malate synthase A) and \textit{mdh} (malate dehydrogenase) coding for enzymes in the TCA cycle were decreased to about 50\% of wild type levels. Genes encoding the pyruvate dehydrogenase complex were upregulated two fold in \textit{atp} mutants. Some genes involved in the synthesis of respiratory chain enzyme were also upregulated (such as \textit{ndh}, encoding NADH dehydrogenase II, which increased 3.7 fold and \textit{cydA}, cytochrome \textit{d} oxidase subunit I, which increased two fold). Genes encoding flagellar formation and cellular structures (\textit{ompF}) were repressed. Other genes that were repressed were \textit{hupA} and \textit{hupB} (encoding the DNA binding protein Hup), and \textit{topA} (encoding DNA topoisomerase I). These studies suggested that \textit{atp} mutations have multifactorial effects in \textit{E.coli} and that \textit{pckA} may be one of many genes that is affected indirectly.

4.4 Expression of \textit{pckA} mRNA in \textit{atpG} mutants

Goldie \textit{et al.}, (1984) showed that at the onset of stationary phase in cells grown on LB, there was 100 fold induction of \(\beta\)-galactosidase activity in \textit{pckA-lacZ} fusion
strains. In addition, they concluded that besides cAMP, there was another, unknown regulatory signal which is either required to inhibit pckA expression during log phase or to induce pckA expression during stationary phase.

The lower expression of Pck enzyme activity in the atpG mutants could be due to several factors. One of these factors included the possibility of atpG mutants affecting transcription of pckA: perhaps removing a regulatory signal that is required to induce pckA transcription during stationary phase. Mutations in the γ-subunit might have a regulatory effect on pckA at transcriptional, translational or post translational levels. In this study, we determined the level of pckA mRNA expression in the atpG mutants using real time RT-PCR.

During the growth curve of the atpG mutants and of wild type HG163, pckA mRNA levels were measured. The results indicated that the level of wild type, HG163, pckA mRNA had increase significantly by 3 hours and reached a maximum at the onset of stationary phase (7hrs). By 9 hrs, the level of pckA mRNA started to decrease, perhaps due to sessation of pckA transcription, accompanied by slow growth at this point.

From 1 hr to the onset of stationary phase, there was approximately 50-fold induction in pckA mRNA expression in wild type HG163. This fold in induction is about half of that observed by Goldie et al., (1984). However, this work was done using pckA-lacZ fusions to measure β-galactosidase activities. There are several reasons why the fold induction of mRNA does not correlate with that of the fold induction in protein. Firstly, one molecule of pckA mRNA is not equivalent to one molecule of protein synthesised. Secondly, there are numerous RNA degradation pathways within E. coli.
(Grunberg-Manago, 1999; Rauhut and Klug, 1999; Regnier and Arraiano, 2000) which are important regulatory mechanisms and $pckA$-$lacZ$ mRNA could be more stable than $pckA$ mRNA. Using subgenic-resolution oligonucleotide microarrays to study global RNA degradation in wild type $E. coli$ MG1655, Selinger et al., (2003) found that the half-life of total mRNA was 6.8 min. This suggested that degradation of mRNA is a fast and active process, thus the number of $pckA$ mRNA molecules is a steady state value reflecting synthesis and degradation rates. Thirdly, Mohanty and Kushner (2006) found that the majority of $Escherichia coli$ mRNAs undergo some form of transcriptional modification in exponentially growing cells. This is mainly caused by poly(A) polymerase, (PAP1). Deletion of the structural gene of PAP1 ($pinB$) caused a 90% reduction in poly(A) levels along with increased mRNA half-lives, while overproduction of PAP1 caused a reduction in mRNA stability and invariability (Mahanty and Kushner, 1999). These data suggest that there are numerous factors affecting mRNA stability and that they may be important in determining steady state levels of $pckA$ mRNA.

The $atpG$ mutants (HG203, HG205 and HG206) had similar patterns of $pckA$ expression as wild type, with induction of mRNA starting at 3 hrs, peaking at 7 hrs and decreasing from 9 hrs onwards. These results suggest that $atpG$ does not regulate $pckA$ at the transcriptional level. Wild type levels appeared to be slightly higher throughout, but these differences were not statistically significant. The Gro$^+$ isolates, partially reverted in Pck enzyme levels and in growth yields, had similar mRNA profiles as wild type HG163. This confirms that $atpG$ does not regulate $pckA$ at the transcriptional level. This down regulation of expression of $pckA$ by mutation in $atpG$ is probably related to other factors such as translation, assembly or stability of Pck protein.
4.5 Proton flux in *atpG* mutants and wild type HG163

In inside-out vesicles, normally functioning ATP synthase will pump protons inside the vesicle. Acridine orange penetrates the membrane vesicles and emits fluorescence at 530 nm with an excitation of 490 nm. It combines with H\(^+\) and is protonated (Rudnick, 1986). This leads to further diffusion of acridine orange into the vesicles and quenching of fluorescence. Thus a normally functional ATP synthase inside-out vesicle, will pump protons inside the vesicle, leading to a decrease of fluorescence (Fig. 23).

![Diagramatic representation of fluorescence quenching in inside-out vesicles. ATP synthase pumps protons inside the vesicle. Free acridine orange molecule emits fluorescence. However, when protonated, no fluorescence is emitted.](image)

As expected, the ability of inside-out vesicles from wild type cells to pump H\(^+\) in the presence of ATP, was demonstrated, whereas vesicles from the *atpG* mutants could not pump H\(^+\) ions under these conditions. The mutants were complemented with an *atpG*\(^+\) plasmid, and fluorescence quenching of acridine orange was completely restored. These results indicate that in the *atpG* mutants, there is no pumping of H\(^+\) outside the cell by ATP synthase. Therefore the question that arises is whether in the *atpG* mutants there are disturbances in pH levels and if so, could the changes in pH influence the Pck expression. Usually in *E. coli* cells during aerobic growth, there is excretion of
membrane permeable weak acids that lead to an increase in intracellular pH. These weak acids concentrate down the pH gradient, thus acidifying the cytoplasm (Bock and Sawers, 1996). *E. coli* maintains its internal pH between 7.4 and 7.8 during aerobic growth (Lambert *et al.*, 1997). Thus we hypothesized that intracellular pH changes may affect expression of *pckA*.

In *Agrobacterium strain C58*, Liu *et al.*, (2005) showed that the *pckA* gene expression is dependent on the intracellular pH: with low pH, *pckA* will be induced. The *pckA* is located adjacent to the loci *chvG* and *chvI* genes that encode a two-component regulatory system important for virulence. These genes also control acid-inducible genes. Mantis and Winans, (1993) showed that the *chvI* gene of *Agrobacterium tumefaciens* complements an *E. coli phoB* mutation (*phoB* encodes alkaline phosphatase in *E. coli*). Bacteria use the *phoB-phoR* sensor/kinase system to sense external acidity (Suziedeliene *et al.*, 1999); although the *pho* regulon in *E. coli* is usually induced by phosphate starvation.

Goldie (unpublished results) has shown that growth of *E. coli* on LB medium without glucose (conditions leading to maximum expression of *pckA*) causes the medium to become alkaline, likely due to transport of amino acids into the cells. The increasing alkalinity of the medium could be accompanied by acidification of the cytoplasm. This would likely not occur in *atpG* mutants due to the permeability of their membranes to protons.
4.6 Conclusion

In this study, while working with \textit{atpG} mutants, Gro+ variants of the \textit{atpG} mutants were isolated which were partially reverted in their Pck specific activities. These Gro+ suppressor mutants have Pck activity 51\% to 73\% of wild type Pck activity. Growth curves and doubling time results also indicate that these Gro+ suppressor mutants have higher growth yields even if their doubling time is not significantly different from the original \textit{atpG} mutants. However, the ATP synthase activity of mutants and Gro+ suppressor mutants is unchanged. It is very low compare to wild type indicating that these mutants and Gro+ suppressor mutants are still Atp-.

The \textit{pckA} mRNA expression of the mutants and wild type was determined by real time RT-PCR to assess whether \textit{atpG} mutations had effects on \textit{pckA} transcription. Real time RT-PCR results indicate that there is no major difference in \textit{pckA} mRNA expression in wild type, mutants and suppressor mutants. Thus, mutations in \textit{atpG} do not have an effect on transcription of \textit{pckA}.

Moreover, the H+ ion flux was tested in the mutants and wild type by quenching of acridine orange fluorescence. These experiments demonstrate the inability of the \textit{atpG} mutants to pump proton ions actively across the membrane. Thus these results suggest that the F\textsubscript{0} ATPase remaining in the \textit{atpG} mutants could be only acting as a H+ pore leading to an equilibrium state for H+ inside and outside the cell. Changes in ΔH+ or in pH inside or outside the cell membrane may affect the Pck induction and/or Pck activity.

Considering the original hypothesis: “Mutations in \textit{atpG} alter \textit{pckA} transcription in \textit{Escherichia coli}”, I can conclude that mutations in \textit{atpG} do not affect
pckA transcription. Altered expression of Pck could be due to changes in translation, assembly or stability of the enzyme. Down regulation of \(pckA \) by mutations in \(atpG \) could also be related to other factors such as post transcriptional regulation, changes in \(\Delta H^+ \) or changes in internal pH. It is also clear, however, that transcription of \(pckA \) increases about 50 fold in stationary phase by some other mechanism, since this was still observed in \(atpG \) mutants.

4.7 Future work

Since gluconeogenesis is an energy consuming process, the decrease in ATP production by ATP synthase in \(atpG \) mutants could be a factor in the decrease in Pck activity. If these mutants have pleotrophic effects on other gluconeogenic enzymes or Krebs cycle enzymes, especially if changes in intracellular pH, concentration of ATP or pH gradient are involved, then measuring the activity of these enzymes in the \(atpG \) mutants in log phase and stationary phase could be important. These activities were assayed and found to be normal by Deng Mapiour, a summer student; however, it was determined that this work was done with the strains which reverted to Gro\(^+\) Pck\(^\pm\) and it will have to be repeated.

The acridine orange experiment demonstrates that there is no flux of H\(^+\) ions in the \(atpG \) mutants. Could the lack of a pH gradient be the cause of a lower level of Pck activity? This could be determined by first measuring the pH inside and outside the cells. Usually during respiration, H\(^+\) ions are extruded and the pH outside the cell is more acidic. At the end of respiration, H\(^+\) is passively transported inside the cell, thus causing an equilibrium inside and outside the cell (Kashket, 1985). The internal or intracellular pH can be calculated using a derivative of green fluorescence protein (GFP) designated
as ratiometric GFP (Olsen et al., 2002). The ratiometric GFP was obtained by introducing specific amino acid substitutions to the chromophore, causing the resulting protein to alter its excitation spectrum according to pH of the surrounding environment (Miesenböck et al., 1998). The atpG mutants could be transformed with a ratiometric GFP plasmid. Olsen et al., (2002) reported that they found excitation at 410 nm gave a strong pH dependent fluorescent signal and at 430 nm, a pH independent point was observed. The excitation ratio, fluorescence intensity at 410 nm and 430 nm ($R_{410/430}$) was found to be suitable as a measure of intracellular pH (pH_i). A calibration curve could be constructed that will correlate $R_{410/430}$ to pH_i. Cells could be grown at 37°C in LB broth and then transformed with ratiometric GFP plasmid. The cells in buffers of different pH’s could then be permeabilised with carbonyl cyanide-3-chlorophenylhydrazone (CCCP), which will disrupt the proton gradient, to generate a standard curve. Subsequently overnight cultures expressing ratiometric GFP could be harvested by centrifugation, washed twice in potassium phosphate buffer (pH 7.5) containing glucose (10 mM), and finally resuspended in potassium phosphate buffer (10 mM) with appropriate pH for 30 min. The bacterial suspension (10^8 cells) will then be applied to a coverslip coated with 0.01% poly-L-lysine and allowed to settle. Unattached bacteria will be removed by rinsing with buffer. Fluorescence will then be read with a fluorescence microscope. The initial range of the calibration curve could lie between pH 4.5 to 8.5. The $R_{410/430}$ will then be used to correlate to the calibration curve constructed with wild type to obtain the internal pH of wild type, atpG and atpG mutants complemented with atpG plasmid.
Appendix 1

RNA extraction method from Dr. G. A. Mackie (1989): Micro procedure

Grow your cultures to the desired density in LB; add rifampicin (freshly prepared in methanol) as needed.

Remove 320 µl of culture (with a P1000 pipettor) and add to 160 µl of 3x extraction buffer (1.5% SDS, 300 mM Na-acetate, pH ~6.0, 30 mM EDTA) in a microcentrifuge tube in a heating block set to 100 degrees C. Boil for 60 sec. Chill on ice.

Add 500 µl water-saturated phenol (pH 4.3; Fisher Scientific) and vortex well. Centrifuge at room temperature for 2 min at full speed in an microfuge.

Transfer the aqueous phase to 500 µl of phenol-chloroform-isoamyl alcohol (25:24:1). Leave the last 50-100 µl behind and avoid taking anything from the interface. Vortex well and spin as before. Transfer the aqueous phase to a fresh tube containing 500 µl of secondary butanol (2-butanol). Vortex well and spin for 15 sec.

The butanol is the upper phase - remove it and keep the lower aqueous phase. This step removes residual phenol and other non-polar compounds. At this stage you should have about 400-450 µl. If the volume of the aqueous phase is larger than this, you can repeat the 2-butanol extraction, but note that it will shrink the aqueous phase to about half its volume. You may have to add sterile water to get back to 400 µl volume.

Add about 30 µl of 3 M Na-acetate and 1 ml of 95% ethanol. Let precipitate overnight at -20 °C.

Recover by centrifugation at full speed for 10-15 min in the cold. You should obtain a somewhat translucent white pellet 1-2 mm in diameter. Drain thoroughly (use a pipettor) and let residual ethanol evaporate at room temperature for 15 minutes.

Dissolve the pellet in a sterile buffer containing 10 mM Tricine, pH 7.5, 100 mM Na-acetate, 1 mM EDTA and 800 mM ammonium acetate. Vortex briefly. Reprecipitate with 500 ul ethanol at -20 °C (overnight).

Recover the RNA by centrifugation (10-15 min at full speed). Drain well. Cover the pellet with 500 ul 80% ethanol, let sit on ice a few minutes, then spin again.

Let the final pellet air dry for >10 min (we never use a speed vac), then dissolve in 50 ul sterile water. Estimate the yield by the A260 using a 1:200 dilution. Expect to recover 35-50 µg of RNA in total.

Check RNA by separating 5 µg on an agarose (or polyacrylamide gel). The intensity of the 23S rRNA should be double that of the 16S - if not, there's been significant degradation.
Appendix 2
Quantitative PCR cycle:

<table>
<thead>
<tr>
<th>Action</th>
<th>Temp(°C)</th>
<th>Time</th>
<th>Ramp time</th>
<th>Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. UDG reaction</td>
<td>50</td>
<td>2 min</td>
<td>2°C / sec</td>
<td>no</td>
</tr>
<tr>
<td>2. UDG inactivation/ template denaturation</td>
<td>95</td>
<td>2 min</td>
<td>2°C / sec</td>
<td>no</td>
</tr>
<tr>
<td>3. Denaturation</td>
<td>95</td>
<td>15 sec</td>
<td>2°C / sec</td>
<td>no</td>
</tr>
<tr>
<td>4. Hybridisation</td>
<td>60</td>
<td>30 sec</td>
<td>2°C / sec</td>
<td>no</td>
</tr>
<tr>
<td>5. Elongation</td>
<td>72</td>
<td>30 sec</td>
<td>2°C / sec</td>
<td>no</td>
</tr>
<tr>
<td>6. Plate reading</td>
<td>-</td>
<td>-</td>
<td>0.2°C / sec</td>
<td>1 sec + plate read</td>
</tr>
<tr>
<td>7. Repeat steps 3 to 6 for 49 times</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>no</td>
</tr>
<tr>
<td>8. Incubation</td>
<td>95</td>
<td>1 sec</td>
<td>2°C / sec</td>
<td>no</td>
</tr>
<tr>
<td>9. Melting curve</td>
<td>60-95</td>
<td>1 sec hold</td>
<td>-</td>
<td>Read every 0.2°C</td>
</tr>
<tr>
<td>10. Incubation</td>
<td>25</td>
<td>30 min</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note:

A UDG incubation step before PCR cycling destroys any contaminating dU-containing product from previous reactions. UDG is then inactivated by the high temperatures during normal PCR cycling, allowing the amplification of genuine target sequences. (Invitrogen).
Appendix 3

Membrane isolation by the French Press method (Madhavan, 2002)

Cells were inoculated overnight in 300 ml of minimal media containing glucose and casamino acid. The next day, cells were centrifuged at 5000 rpm for 15 min at 4 °C. The pellets were resuspended in 50 mM Tris, (pH 7.8 + 5 mM MgSO₄) and centrifuged at 5000 rpm for 15 min at 4°C. Pellets were then washed twice with 200 ml 0.8% saline solution before spinning again at 5000 rpm for 15 min at 4°C. Pellets were again resuspended in ice cold Tris-Mg EDTA buffer containing 1mM EDTA (1g/10 ml) before proceeding to French press at 1000 psi and centrifuge 12,000 rpm for 15 min at 4°C. The supernatants collected were centrifuged at 17,640 X g/ 1hr at 4°C in a 60 Ti rotor in a Beckman ultracentrifuge.

The pellets obtained were resuspended in 2 ml ice cold Tris-Mg EDTA buffer, homogenised with a hand held homogeniser and frozen at -70 °C for further use.
References

Kaim G, Mathey U and Dimroth P. (1998). Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F_{1}F_{0} ATPases. EMBO J. 17: 688-695.

Ogilvie I., Aggeler R. and Capaldi RA. (1997). Cross-linking of the delta subunit to one of the three alpha subunits has no effect on functioning, as expected if delta is a part of the stator that links the F1 and F0 parts of the Escherichia coli ATP synthase. J. Biol. Chem. 272: 16652-16656.

Wright JA. and Sanwal BD. (1969). Regulatory mechanisms involving nicotinamide adenine nucleotides as allosteric effectors. II. Control of PEPCK. J. Biol. Chem. 244: 1838-1845.

www.ambion.com
www.invitrogen.com/content.cfm?pageid=3978#HowLuxWorks

www.qiagen.com/HB/plasmid purification

www.micro.biol.ethz.ch/op/ op_semdipl_dimroth2.htm

