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Abstract 
 

A current popular paradigm in e-learning is that of the "learning object".  Broadly de-

fined, a learning object is a reusable piece of educational material intended to be strung 

together with other learning objects to form larger educational units such as activities, 

lessons, or whole courses.  This aggregating of learning objects together is a recursive 

process – small objects can be combined to form medium sized objects, medium sized 

objects can be combined to form large objects, and so on.  Once objects have been com-

bined appropriately, they are generally serialized into content packages, and deployed 

into an online course for delivery to learners. 

Learning objects are often stored in distributed and decentralized repositories throughout 

the Internet.  This provides unique challenges when managing the history of such an ob-

ject, as traditional versioning techniques (e.g. CVS, RCS, etc.) rely on centralized man-

agement.  These challenges have been largely ignored by the educational technology 

community, but are becoming more important as sharing of learning objects increases. 

This thesis explores these issues by providing a formal version model for learning ob-

jects, a set of data bindings for this model, and a prototype authoring environment which 

implements these bindings.  In addition, the work explores the potential benefits of ver-

sion control by implementing a visualization of a learning object revision tree.  This 

visualization includes the relationship between objects and their aggregates, the struc-

tural history of an object, and the semantic changes that an object has undergone. 
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Chapter 1  

Introduction 
The rise in use of widely distributed networks like the Internet has increased the acces-

sibility and affordability of education for the masses.  Educational institutions are better 

able to distribute their courses and programs to both national and international markets.  

People who are unable to participate in traditional learning environments due to the tim-

ing of classes, inability to relocate to a traditional classroom, or costs involved with 

leaving employment, are turning to electronic learning (e-learning) as a viable alterna-

tive.  The simplicity of publishing on the web has decreased the costs for some publish-

ers of educational material as well.  While there is no consensus on the effects of the 

Internet on publishing costs for traditional vendors, a variety of independent communi-

ties built around specific topics have emerged.  These online communities usually pro-

vide member-created content for little or no cost in the form of tutorials, white papers, 

or discussion forums.  This has introduced literally millions of new, highly accessible, 

educational resources. 

With the learning, education, and training industry market estimated at more than one 

and a half trillion dollars per annum (2002), a number of universities, government enti-

ties, and corporations have shown a great deal of interest in capitalizing on electronic 

learning technologies.  Principle amongst these technologies are learning objects – 

pieces of educational content meant to be reused to provide for customized, yet cost ef-

fective, learning.   

At a very coarse grain level, learning objects are simply digital resources that are anno-

tated with metadata and deposited in electronic learning repositories.  Instructors or 

learners can search or browse these repositories to find objects of interest.  In and of it-
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self this is not an overly novel idea – traditional learning materials such as textbooks 

have a long history of being categorized in library systems with a variety of metadata, 

including topic based classification schemes like the Dewey Decimal system or the Li-

brary of Congress Catalog.  This metadata was then stored in physical card catalogs, 

which are centralized repositories that describe every holding a library has.  Learners 

could then choose to either browse the shelves of the library based on topic, or search 

for known titles in the card catalog by author name.  While most current library systems 

have replaced these catalogs with electronic versions allowing for more diverse search-

ing options, the resulting process followed is relatively unchanged. 

As digital resources which are produced in a decentralized manner for a global market, a 

number of unique issues arise when using learning objects: 

• How can learners find the educational material that is personalized for them and 

the situation they are learning in?  Traditional library and card cataloging sys-

tems depend on users of common interests and abilities to be situated geographi-

cally close to one another.  The Internet has removed this restriction and now 

communities of interest and practice are often distributed in culture, language, 

and location.   

• How can a content management system present educational material developed 

by different authors and communities in a consistent and comprehendible man-

ner?  Traditional educational resources such as books are decidedly immutable 

and their content is presented as the publisher intends it.  For instance, to view a 

book in another format such as a large print edition requires buying another copy 

of the book (if it is even available in a large print version).  Electronic materials 

are much more mutable, and can see content rendered based on the format the 

user desires, instead of the format the publisher desires.  When mixed with 

communities of practice, derivative works become the norm rather than the ex-

ception. 

• Given the web’s strongly decentralized nature, how can the duplication of work 

be prevented?  Duplicating educational works to offer competing textbooks for a 

particular course is common between publishers, and is seen as a way to main-
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tain interests in lucrative markets.  As more course material is offered over the 

web in electronic form for no cost (e.g. the open courseware initiative 

(Massachusetts Institute of Technology, 2003)) the focus changes, and it be-

comes important to reduce the amount of duplication of work, and instead pro-

vide easy means for creating new derivative works that are easily customized 

and support individualized learning. 

This work explores these concerns by studying how changes to learning objects can be 

captured and expressed both within a traditional structural sense, as well as in a seman-

tic sense. 

1.1 Hypothesis and Research Objectives 

A learning object is made up of at least two parts; the content of the object which ad-

heres to a well defined structure, and the semantics of the object, which adheres to well 

defined ontologies. The lack of metadata specifically for structural versioning of a learn-

ing object makes it impossible for a learning object authoring environment to provide 

common version control functions.  I hypothesize that the addition of versioning related 

metadata and an understanding of the structure of a learning object can be used to per-

form automatic regression of a learning object (typically called rollbacks).  Further, 

when semantic changes are also captured, an authoring environment can support the 

learning object selection process by differentiating between the meaning of related 

learning objects. 

The research objectives of this thesis are as follows: 

• To provide a model for expressing the structure of learning objects 

• To provide a model for expressing both structural and semantic changes that can 

be applied to a learning object 

• To provide a vocabulary for expressing the ways in which a learning object can 

change structurally, in particular those that conform to the Extensible Markup 

Language (XML) and the IMS Simple Sequencing Specification 
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• To provide a vocabulary for expressing the ways in which a learning object can 

change semantically 

• To demonstrate by way of an implementation how collecting structural version-

ing information can be used to perform automatic learning object regression 

(rollbacks) 

• To demonstrate by way of an implementation how collecting semantic version-

ing information can be used to visualize differences between related learning ob-

jects. 

1.2 Organization of Thesis 

This thesis is divided into five chapters.  Chapter 2 introduces the contemporary concept 

of learning objects, and identifies the major areas of current research.  An overview of 

the state of the art in software versioning is also discussed.  Chapter 3 provides a model 

for capturing both structural and semantic changes as applied to learning objects.  Inte-

gral in expressing how a learning object can change at a structural level is an under-

standing of the kinds of learning objects that exist, and their aggregate parts.  This is 

also discussed in chapter three, which ends with a description of a formal schema for a 

learning object version model.  To demonstrate the abilities of the version model, 

Chapter 4 provides an overview of a prototype authoring environment.  This authoring 

environment, the Learning Object Versioning Environment (LOVE), provides a learning 

object author with advanced editing features that allow for structural rollbacks (shown in 

section 4.3) and semantic visualization (shown in section 4.4).  Finally, the work con-

cludes in Chapter 5 with a discussion of the research contributions made and avenues for 

further exploration. 
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Chapter 2  

Background 
This chapter discusses the current state of the art of reusable education materials often 

coined as "learning objects".  It focuses more on the technical aspects of learning ob-

jects, such as composition, distribution, and description, instead of the pedagogy behind 

their use.  In addition, this chapter briefly summarizes the field of version control, and 

indicates how version control principles are currently being applied to learning objects.  

2.1 State of the Art in Learning Objects 

Learning objects are reusable pieces of educational material meant to be strung together 

to form larger educational units such as activities, lessons, or whole courses.  This defi-

nition is purposefully vague as contemporary literature often disagrees on the more pre-

cise characteristics of learning objects.  While the learning object design field is young, 

it stems from over twenty years of research in instructional design, educational technol-

ogy, and computer science.  This diversity of origin leads to a variety of questions and 

debates, ranging from the more abstract notions of pedagogy, methodology, and instruc-

tional design, to the more technical aspects of structural syntax, technological specifica-

tions, and interoperability.  Should the field of learning objects include traditional physi-

cal materials, or are digital artifacts the only ones of interest?  Are learning objects re-

lated to the concept of objects as described in the object-oriented programming para-

digm?  How much educational material should a learning object contain? 

Despite the lack of consensus on a single definition, the field of learning objects has 

seen a surge of research from information technology companies, academic institutions, 

and government organizations.  Section 2.1.1 provides an overview of the most recog-
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nized learning object definitions and identifies both the commonalities and the differ-

ences in those definitions.  Like many technology fields, the field of learning objects is 

filled with analogies and metaphors to describe the structure of the items being dis-

cussed.  Section 2.1.2 gives an overview of the various metaphors that have been used to 

describe learning objects, and identifies a number of models used to describe their struc-

ture.  The ability to search for and retrieve appropriate learning objects is a core interest 

for learning object practitioners and has seen much work within specification and stan-

dards communities.  Two aspects of this interest, categorizational metadata and data re-

positories, have seen a large amount of development and are described in sections 2.1.3 

and 2.1.4 respectively.  Finally, section 2.1.5 outlines how learning objects can be com-

bined together to help satisfy more coarse grain educational goals. 

2.1.1 Learning Object Definition 

It is not clear when reusable pieces of educational material were first labeled “learning 

objects”, though Wiley attributes this term as a derivative from the title of the Computer 

Education Management Association working group called “Learning Architectures, 

API’s, and Learning Objects”
1
, which was chartered in 1994 (Wiley, 2001).  Perhaps the 

broadest definition of a learning object is that which is given by the Institute of Electri-

cal and Electronics Engineers, Inc. (IEEE) Learning Technologies Standards Committee 

as "any entity, digital or non-digital, that may be used for learning, education or train-

ing" (IEEE, Inc., 2002).  This definition includes anything that can be used for learning, 

ranging from traditional print material and online tutorials, to the more abstract notions 

of an instructional institution, department, or individual.  It has been criticized as being 

overly vague, and most practitioners introduce their own definitions.  Wiley argues that, 

in addition to being vague, this definition is incorrect in including non-digital artifacts as 

learning objects, and is not useful when learning technologies are primarily digital in 

nature.  He provides a subset definition as “any digital resource that can be reused to 

support learning” (Wiley, 2001).  This definition contains two important differences 

from the IEEE definition: resources that are not digital in nature and cannot be easily 

                                                 
1
 At the time of writing this group had been renamed as the “Learning Architecture, Learning Objects: 

Learning API Task Force”.  The interested reader is directed to (Hodgins, ) for more information about 

the working group. 
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reused are excluded, and only those resource that are actively being used to support the 

learning process are included. 

Robson takes an object-oriented programming approach to learning objects, and defines 

them (using the term “learning resource”) as “any resource that an instructor makes 

available to a student for a pedagogic purpose and that can be realized in some type of 

learning environment” (Robson, n.d.).  He suggests that learning objects should contain 

functionality through methods and properties.  He identifies the ability to render a learn-

ing object based on the context of the learner and the media available as a typical 

method.  This allows for a single learning object to be easily displayed in both interac-

tive and non-interactive environments.  Properties are used to encapsulate both the rela-

tionships between learning objects, and content related to the pedagogical purpose itself.  

For example, a learning object that helps teach database modeling through entity-

relationship diagrams could have methods to display examples using the Chen, Crow-

foot or Unified Modeling Language notation depending on the tool the students can use, 

and would include blocks of text and images as properties of the various different ele-

ments available. 

Merrill (Merrill, n.d.) describes a similar instructional design component as a “knowl-

edge object”.  These knowledge objects are made up of five main components: 

• A name or associated information that identifies the object, whether it is a de-

vice, person, creature, place, symbol, object, or thing 

• an aggregation of parts of the entity, which can be knowledge objects them-

selves 

• activities that learners can complete 

• processes, which are methods of instruction that execute based on some condi-

tional value 

• properties, which are data values relating to the object, its activities, or its proc-

esses 
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This description is functionally similar to Robson’s object-oriented approach, and al-

lows for a varying degree of granularity by reusing knowledge objects as parts of other 

knowledge objects. 

While not arguing for or against the object-oriented paradigm, Wu (Wu, 2002) intro-

duces the concept of inheritance as an important factor when reusing learning objects.  

He suggests that by substituting the content of similar learning objects, one can build 

different versions of the same material faster.  He identifies that in addition to substitu-

tion, learning objects should be able to reuse one another by concatenating inherited 

pieces of information together with new information for derivative objects. 

Downes suggests that modeling learning objects using the object-oriented paradigm will 

lead to the rise of Rapid Application Design (RAD) for educators.  Educators will view 

online courses as “a piece of software, [which] may be seen as a collection of re-usable 

subroutines and applications” (Downes, 2002).  He goes on to suggest that a learning 

object could also be thought of as “a small computer program that is aware of and can 

interact with its environment” (Downes, n.d.).  This definition expands the notion of an 

interactive learning object by not just adding functions or methods, but by adding some 

intelligence or ability to reason.  Indeed, he likens the difference between this definition 

and the previous definitions to the difference between passengers and luggage, with lug-

gage being the epitome of inadaptable entities that often get lost, and passengers being 

intelligent and adaptable entities that get where they intend to go.  This notion of intelli-

gent learning objects has recently been embraced by other researchers as an significant 

direction, and is a prominent research goal of the University of Saskatchewan within the 

Learning Object Repositories Network (LORNET) project (Learning Object Reposito-

ries Network, n.d.). 

Sosteric and Hesemeier (Sosteric and Hesemeier, 2002) strongly criticize the object-

oriented programming paradigm for learning objects as “marginal, at best, and abso-

lutely counterproductive at worst”.  They suggest that the primary beneficiary (the “con-

sumer”) of object-oriented programming is the programmer who is trying to read and 

write code, while the primary beneficiary of learning objects is the individual who is 

gaining instruction from the object, not the instructional designer.  Further to this they 
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argue that it is not so much the structure of a learning object that makes it useful, but the 

contextual information that describes how the object can be used.  Building on this ar-

gument, they suggest the following definition: 

“A learning object is a digital file (image, movie, etc.,) intended to be used for 

pedagogical purposes, which includes, either internally or via association, sug-

gestions on the appropriate context within which to utilize the object.”(Sosteric 

and Hesemeier, 2002) 

 

Regardless of the exact definition of a learning object, there is some consensus that re-

usability is the most significant property instructional designers hope to achieve.  

Friesen outlines three facets of learning object reusability: discoverability, modularity, 

and interoperability (Friesen, 2001).  He further identifies that building learning objects 

using component-based software architectures is common, and many data repositories 

treat learning objects as “black boxes”.  He argues that descriptive metadata are needed 

to allow for a learning object to be discoverable, and that industry standards are required 

to support interoperability. 

2.1.2 Learning Object Metaphors, Models, and Structure 

Definitions aside, the learning object literature uses metaphors and analogies that serve 

to illustrate the problems and benefits of reusability.  Perhaps the earliest relevant anal-

ogy is one from Ralph Gerard in an article published in a 1969 book on computer-

assisted instruction (Gerard, 1969).  As cited by Gibbons et al., he identifies that “cur-

ricular units can be made smaller and combined, like standardized Meccano [mechanical 

building set] parts, into a great variety of particular programs custom-made for each 

learner” (Gibbons, Nelson, and Richards, 2001).  This statement suggests that a core is-

sue when using learning objects as reusable elements, particularly within adaptable sys-

tems, is the granularity at which they are created.  Smaller learning objects can be com-

bined in much more precise ways, adapting a learning system more to a user’s interest.  

Larger learning objects, much like partially built Meccano structures, are less effective 

in adaptable systems where the chances of different users needing individually gener-

ated courses is high. 



 10 

This line of thinking is also behind the LEGO metaphor which Wiley describes as a 

method in which “[we] create small pieces of instruction (LEGOs) that can be assem-

bled (stacked together) into some larger instructional structure (castle or spaceship)” 

(Wiley, n.d.).  Wiley, however, attacks this metaphor as one that, while useful for de-

scribing the structure of learning objects to the public at large, has restricted the way in-

structional designers can create learning objects. He further identifies two main defi-

ciencies of using the LEGO metaphor for learning objects as: 

• Combinability: Unlike LEGO pieces which can all interconnect, not all learning 

objects can be combined with other learning objects to form more complex struc-

tures. 

• Sequencing: While LEGO pieces can be assembled by anyone and in any man-

ner, creating courses of learning objects may require trained instructional de-

signers. 

Wiley further suggests that these oversimplifications come from a failure to realize 

learning objects are highly complex collections of smaller content, called information 

objects.  Unlike a learning object an information object is created in an instructionally 

design-neutral way.  The act of aggregating information objects together using instruc-

tional design theories and philosophies creates a learning object.  To help capture this 

understanding of a learning object, Wiley suggests using the metaphor of an atom where 

information objects (neutrons, protons, and electrons) are carefully crafted together to 

form learning objects (atoms) which, because of their structure, can only be sequenced 

with other specific learning objects (atoms) and form units (molecules) which may form 

larger structures, like courses (crystals). 

The concept of learning objects as an aggregation of smaller pieces of content is ac-

cepted by many other practitioners.  Wu (Wu, 2002) describes an e-learning system that 

uses a set of “knowledge bits” to create learning objects.  Knowledge bits are combined 

together by an instructional designer, with a keen eye at attempting to use the inheri-

tance features described in section 2.1.1, to create the larger and more publicly reusable 

learning objects.  Barritt et al (Barritt and Lewis, 2002) describe a model of a learning 

object as a set of five to nine information objects that includes specific overview, sum-
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mary, and assessment mechanisms.  Each information object is based on a single objec-

tive, and contains content, questions, and an indication of the user’s ability in the area.  

These objects can be classified as a concept, fact, process, principle, or procedure, and 

may contain metadata describing the object. 

O
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w
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u
m
m
a
ry

 

Figure 2-1: Reusable Learning Object (RLO) model adapted from (Barritt and Lewis, 

2002) 

NETg Inc., a producer of learning management software and an early adopter of learn-

ing objects, also mandates that assessment is a core component of a learning object’s 

structure.  As cited by Ip et al. (Ip, Morrison, and Currie, 2001), a learning object is a 

triple including a “learning objective, a unit of instruction that teaches the objective and 

a unit of assessment that measure[s] the objective.”.  They further limit their model of a 

learning object to non-interactive material to exclude the requirement that learning man-

agement systems need to make available methods to perform computational support. 

Despite the differences between these learning object models, the majority of large open 

learning object repositories consider any file at the end of a resource indicator, usually a 

Uniform Resource Locator (URL), to be a learning object.  URLs identify only the loca-

tion and method by which a learning object should be obtained, and do not explicitly 

dictate the internal structure of a learning object.  An analysis of the file extension used 

within the URL, or an inspection of the first few bytes of the learning object against 

known file types, may deduce the file structure at a coarse grain level.  For example, one 
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might determine from a URL that ended in “.txt” that the learning object being refer-

enced had the same structure as an ASCII text file.  This assumption effectively over-

loads the function of a resource identifier, and is a dangerous (yet well practiced) proce-

dure.  The document might have an incorrect extension, or the extension might be used 

for many different kinds of documents.  For instance, a file with the “.txt” extension 

might be a rich text file, or a text file that is marked up in Unicode instead of ASCII. 

A number of smaller courseware projects have alleviated these problems by creating 

learning objects with predefined structures.  One of the Technology Enhanced Learning 

projects completed at the University of Saskatchewan uses the Hypertext Markup Lan-

guage (HTML) to create learning objects for online tutorials (Cooke et al., n.d.).  These 

tutorials focused on teaching various computer science concepts, and included a number 

of elements of interactivity.  The tutorials were written by third year computer science 

students, and typically contained Java applets, JavaScript, and Macromedia Flash.  In 

particular, many of the learning objects utilize Java applets to display and evaluate mul-

tiple choice exams and user driven examples.  Similarly, the Educational Object Econ-

omy (EOE Foundation, n.d.) is a learning object repository that is made up of more than 

2,000 educational simulation resources.  Each learning object is referenced by a URL, 

and is made up of a single HTML page that contains a java applet.  These resources fo-

cus on interactivity, and often do not include any evaluation mechanisms. 

While standardizing a particular structural format for learning objects helps improve re-

usability and interoperability, it is not enough to support the automatic use of learning 

objects by Learning Management Systems (LMS).  Consider an applet designed to test a 

learner’s knowledge of an HTML tutorial.  How can a LMS instruct the applet to adapt 

questions based on the learner’s previous answers?  How can a LMS obtain the results 

of the learner’s assessment and adapt further courses to the students needs?  Without a 

description of the internal semantics of a learning object, or at the very least a descrip-

tion of the external interfaces of a learning object, an LMS is unable to reason intelli-

gently about a learning object.   

The Extensible Markup Language (XML) is seen as a key technology in helping to solve 

these semantic problems.  XML facilitates vendor and platform neutral interoperability 
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by specifying an open data model for representing and manipulating semi-structured 

content called the Document Object Model (DOM), as well as a syntax for serializing 

this content for interoperability.  It has been adopted by a large number of e-learning 

vendors as the preferred way to model learning objects, testing and assessment schemas, 

and learner profiles.  Wu's thesis work (Wu, 2002) describes an online learning envi-

ronment built around XML in which learning objects include and reuse assessment 

mechanisms from other specifications.  The Department of Computer Science at the 

University of Saskatchewan developed a similar Learning Management System 

(Department of Computer Science, University of Saskatchewan, n.d.), that contains the 

ability to reuse XML based learning objects in different environments depending on the 

media available.  In particular, learning objects can be rendered into HTML with Java 

Applets for use on the web, and are re-rendered (without interactive elements) into 

Adobe’s Portable Document Format (PDF) for use in print. 

2.1.3 Learning Object Metadata 

Most standard and specification development in the area of learning objects has focused 

on developing metadata schemas to provide categorization and corresponding annota-

tions for learning resources.  Instances of a metadata schema are interrogated when a 

learning object is being searched for, either by software components or by learn-

ers/instructional designers.  Metadata is also used when learning objects are being com-

pared with one another to determine their suitability for a learner. 

The Dublin Core Metadata Initiative (DCMI) (Dublin Core Metadata Initiative, n.d.) has 

a long history of creating metadata specifications for the World Wide Web.  A number 

of these specifications have seen wide adoption not only among web page creators, but 

by corporate and government entities as well.  Notable among these are the United 

Kingdom’s e-Government initiative (Office of the e-Envoy, n.d.), the Canadian govern-

ment’s Treasury Board Information Management Standard (Treasury Board of Canada, 

n.d.), and the Irish Public Service Metadata Standard (Government of Ireland, n.d.).  In 

August of 1999 the Dublin Core Education Working Group was formed within the 

DCMI with the charter of taking existing metadata specifications and making them more 

appropriate for educational materials.  To date, a number of drafts have been released, 
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the first published in May of 2000 (Mason and Sutton, n.d.).  This specification is made 

up of only fifteen elements used to describe the resource, though each element can be 

further refined through “Canberra Qualifiers” (Sutton and Mason, 2001) which are at-

tributes that can be assigned to a given element to contextualize it to a specific domain.  

Many have argued that the DCMI specifications are too coarse grained to provide for 

effective education resource discovery, and a number of other organizations have cre-

ated competing specifications.  Principal among these organizations are the IEEE, the 

IMS Global Learning Consortium, Inc. (IMS), and the Alliance of Remote Instructional 

Authoring and Distribution Networks for Europe (ARIADNE). 

ARIADNE was a European project supported by the European Union Commission, and 

the Swiss Federal Office for Education and Science.  It ran from 1996-2000, and re-

leased a number of metadata documents that were used by both the IMS and the IEEE.  

Since December of 1997 the members of the ARIADNE project have worked closely 

with the IMS to develop an international metadata standard.  The IMS is a consortium of 

commercial, governmental, academic, and other entities whose mandate is to promote 

open specifications for distributed learning.  It is made up of predominantly British and 

American commercial entities, and was one of the first industry consortiums to define 

specifications for e-learning, including question and testing frameworks, course se-

quencing, and metadata models.  The metadata model (IMS Global Learning Consor-

tium Inc., 2003) developed by IMS was used as a base for the IEEE Learning Object 

Metadata (LOM) standard, and differs only in the naming and description of a few ele-

ments.   

As an official standard, the LOM (IEEE, Inc., 2002) is perhaps the most authoritative 

learning object metadata specification.  It describes a conceptual framework for educa-

tional metadata that is separate from any specific implementation.  In addition to the 

conceptual framework, the IEEE provides a number of “bindings”, or mappings from 

the conceptual model into specific markup languages such as XML, or the Resource De-

scription Framework (RDF).  This allows for semantically identical descriptions of a 

learning resource that are syntactically different, allowing for the meaning of the re-

source to be embedded in environments where one particular syntax is more appropriate 

than another.  For instance, the XML syntax is extremely verbose and may not be ap-
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propriate when transmitting large pieces of data over low bandwidth  networks, while 

RDF documents can potentially have a much smaller syntax (e.g. (Grant, Beckett, and 

McBride, 2002)). 

The LOM standard outlines nine categories each of which holds a set of data elements.  

Data elements can contain other data elements that form a hierarchical structure.  Leaf 

nodes in this structure must contain data values, some of which use a closed and prede-

fined vocabulary.  Every data element defined by the LOM is optional with the excep-

tion that if child nodes are used, their appropriate parent nodes must also appear.  In ad-

dition, authors are allowed to extend the model as they see fit as long as they use bind-

ings that provide for interoperability with other author’s extensions.  To help facilitate 

interoperability efforts with the Dublin Core Metadata Initiative, the LOM includes an 

appendix that outlines how the two data models relate to one another.  Table 2-1 outlines 

the structure of both the LOM and the DCMI educational specification. 

This specification suffers from the opposite problem that hampers adoption of the Dub-

lin Core, namely it describes an overly fine grained and complex model.  In an attempt 

to fully define a model for educational metadata, vocabularies which are specific to a 

few ethnic or educational backgrounds have been created.  In addition, the sheer size of 

the model makes full implementation very difficult.  Even the best practices guide for 

the metadata specification from the IMS notes that: 

“Many vendors expressed little or no interest in developing products that were 

required to support a set of meta-data with over 80 elements…[and the] burden 

to support 80+ meta-data elements on the first iteration of a product is too great 

for most vendors to choose to bear” (IMS Global Learning Consortium Inc., 

2003) 

This realization that application developers may wish to pick and choose some elements 

of a model and combine them with elements of other models has resulted in the creation 

of application profiles.  Broadly defined, by authors from both the DCMI and the IEEE, 

an application profile is:  

“An assemblage of metadata elements selected from one or more metadata sche-

mas and combined in a compound stream… [whose purpose] is to adapt or com-

bine existing schemas into a package that is tailored to the functional require-

ments of a particular application, while retaining interoperability with the base 

schemas.  Part of such an adaptation may include the elaboration of local meta-
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data elements which have importance in a given community or organization, but 

which are not expected to be important in a wider context.” (Duval et al., 2002) 

While the original intention of application profiles was to compile a set of metadata ele-

ments from different schemas based on the application being used, the majority of appli-

cation profiles are really being created to meet cultural and domain specific needs. 
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Table 2-1: IEEE Learning Object Metadata (LOM) outline 

1 General 

1.1 Identifier 

1.1.1 Catalog 

1.1.2 Entry 

1.2 Title 

1.3 Language 

1.4 Description 

1.5 Keyword 

1.6 Coverage 

1.7 Structure 

1.8 Aggregation Level 

2 Life Cycle 

2.1 Version 

2.2 Status 

2.3 Contribute 

2.3.1 Role 

2.3.2 Entity 

2.3.3 Date 

3 Meta-Metadata 

3.1 Identifier 

3.1.1 Catalog 

3.1.2 Entry 

3.2 Contribute 

3.2.1 Role 

3.2.2 Entity 

3.2.3 Date 

3.3 Metadata Scheme 

3.4 Language 

4 Technical 

4.1 Format 

4.2 Size 

4.3 Location 

4.4 Requirement 

4.4.1 OrComposite 

4.4.1.1 Type 

4.4.1.2 Name 

4.4.1.3 Minimum Version 

4.4.1.4 Maximum Version 

4.5 Installation Remarks 

4.6 Other Platform Requirements 

4.7 Duration  

5 Educational 

5.1 Interactivity Type 

5.2 Learning Resource Type 

5.3 Interactivity Level 

5.4 Semantic Density 

5.5 Intended End User Role 

5.6 Context 

5.7 Typical Age Range 

5.8 Difficulty 

5.9 Typical Learning Time 

5.10 Description 

5.11 Language 

6 Rights 

6.1 Cost 

6.2 Copyright and Other Restrictions 

6.3 Description 

7 Relation 

7.1 Kind 

7.2 Resource 

7.2.1 Identifier 

7.2.1.1 Catalog 

7.2.1.2 Entry 

7.2.2 Description 

8 Annotation 

8.1 Entity 

8.2 Date 

8.3 Description 

9 Classification 

9.1 Purpose 

9.2 Taxon Path 

9.2.1 Source 

9.2.2 Taxon 

9.2.2.1 Id 

9.2.2.2 Entry 

9.3 Description 

9.4 Keyword 
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Notable profiles include the: 

• Canadian Core Learning Object Metadata Application Profile (CanCore) 

(CanCore Initiative, 2002), which is a subset of the LOM and provides vocabu-

laries specific to the Canadian educational system,  

• Le@rning Federation Profile (Friesen, Mason, and Ward, 2002), which has taken 

a cross section of metadata elements from the Dublin Core Metadata Element 

Set, the Dublin Core Qualifiers, the EdNA Metadata Standard, and the LOM to 

create a localized educational schema for the Australian educational system 

• Gateway to Educational Materials (Gateway to Educational Materials Consor-

tium, n.d.), which has extended the Dublin Core Metadata Element Set with a 

number of American specific educational vocabularies, and the Health Educa-

tional Assets Library (HEAL) (Dennis et al., n.d.), which specializes upon ele-

ments found in the IMS metadata specification. 

2.1.4 Learning Object Repositories 

A learning object repository is a centralized collection of learning object metadata de-

scriptions, and a search service allowing access to these descriptions.  This collection is 

meant to be accessed by learners and educators, and can be embedded within a learning 

content management system.  Many learning object repositories are also meant to be 

used without the aid of a content management system, and are available for open access 

over the web.  The majority of learning object repositories do not include learning ob-

jects themselves; instead, they link to learning objects through URLs and provide index-

ing, categorization, and searching services. 

The Multimedia Educational Resource for Learning and Online Teaching (MERLOT) is 

one of the oldest and most well-known learning object repository.  It was started in 1997 

by the California State University and links to thousands of learning resources including 

presentations, course notes, examples, and interactive applications.  Membership for 

non-commercial entities to use MERLOT is free, and all of the educational materials 

that are submitted are peer reviewed before they are accepted.  MERLOT stores only the 

metadata associated with the learning object being entered, and not the learning object 
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content itself.  The metadata used by MERLOT is a subset of the LOM, and the only 

way to interact with the system is through a series of web pages. 

The Campus Alberta Repository of Educational Objects (CAREO) is an Alberta based 

learning object repository created by the University of Alberta, University of Calgary, 

and Athabasca University.  Unlike MERLOT, CAREO allows users to upload both the 

metadata and the learning object itself.  While the majority of learning objects in 

CAREO are categorized and indexed using the IMS metadata specification, the reposi-

tory architecture allows for any XML schema based metadata to be used.  Like MER-

LOT, CAREO allows for peer reviewing of resources that have been submitted, and us-

ers can both browse and search through the repository using a set of web pages or inter-

act through third party applications.  Materials can be uploaded to CAREO using the 

Advanced Learning Object Hub Application (ALOHA) client tool.  This tool interacts 

with the CAREO server through a XML-RPC based API, and allows for the creation of 

arbitrary metadata based on an XML Schema file.  Further, it can automatically extract 

IMS based metadata from over 200 different file types (Magee et al., 2002). 

Repositories such as MERLOT and CAREO are susceptible to the traditional centralized 

management problems that arise in distributed computing including central point of fail-

ure, limited scalability, and monolithic access rights.  To deal with this, the IMS has cre-

ated a Digital Repository Interoperability Information Model (2003) that builds upon 

XML based standards such as XQuery and the Simple Object Access Protocol (SOAP).  

This model defines operations for searching, downloading, submitting, and alerting us-

ers when new learning objects appear. 

The recent popularity of peer-to-peer file sharing systems such as Napster and Gnutella 

has encouraged a number of similar approaches for e-learning.  Edutella (Nejdl et al., 

2002) is a peer-to-peer based network that provides for resource searching based on the 

Resource Description Framework (RDF).  It is built on top of Project JXTA, a peer-to-

peer infrastructure implemented in Java by Sun Microsystems.  Peers send and receive 

requests using any metadata schema they need to, and a number of prototype applica-

tions have been developed that use the LOM and DMCI specifications.   



 20 

Richards and Hatala (Richards and Hatala, 2002) (Hatala and Richards, 2003) have ex-

panded on the idea of decentralized repositories for learning, and created a set of three 

hierarchically arranged distributed applications for the search and retrieval of learning 

objects.  The first of these tools, called SPLASH, is a desktop client that stores a user’s 

learning objects as local files, and supports the notion of optimal storage as being “close 

to the creator and close to the user” (Richards and Hatala, 2002).  These learning objects 

may be files that were created by the user, or files that have been used recently by the 

user.  As users search for more learning objects, their search queries are propagated to 

other SPLASH clients.  Search and response queries are both encoded with the CanCore 

metadata application profile.  Larger repositories of similar learning objects can be set 

up to help support the notion of communities of interest.  These repositories are set up 

using PONDs – a special SPLASH implementation that can provide an interface to third 

party repositories (such as CAREO or MERLOT).  A POND is specialized to perform 

fast searching and maintain robust database support.  PONDs are connected to one an-

other using POOL Central nodes. A POOL Central node replicates queries throughout 

broadband networks (such as CA*Net3) and may collate results for POND clients.  It is 

important to realize that this is an architectural model, and any specific client implemen-

tation could contain the functionality of all three.  Figure 2-2 describes this architecture. 
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Figure 2-2: POOL architecture, taken from (Richards and Hatala, 2002) 

Finally, the eduSource project (McGreal et al., 2002) was a collaboration of Canadian 

industrial, governmental, and academic institutions responsible for creating a set of in-

teroperable learning object repositories. Perhaps one of the most interesting results of 

this project was the creation of the eduSource Communications Layer (ECL) (Hatala et 

al., 2004) which is both a specification and a publicly available implementation library 

that facilitates communication between repositories.  Using this approach, any number 

of different repositories can be easily included in a larger federated network allowing for 

more diverse searching. 

2.1.5 Learning Object Aggregation 

Learning objects can be further broken up into structures of varying granularity.  While 

the simplest view of granularity splits a learning object into only two parts (information 

objects and their larger learning structures, as discussed in section 2.1.1), more complex 

levels of aggregation can be imagined.  Support for multi-level granularity is included in 

some metadata taxonomies (for instance, the LOM includes element “1.8 aggregation 

level”). 
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Aggregation is the process of combining learning objects to form larger (in scope, depth, 

or size) learning objects.  While there have been a number of models suggested for de-

scribing aggregation, such as the organic aggregation model (Paquette and Rosca, 2002) 

and the layered design model (Wiley et al., 2000), there are two principle specifications 

in widespread use today; the IMS Content Packaging specification (IMS Global Learn-

ing Consortium Inc., 2004), and the IMS Simple Sequencing specification (IMS Global 

Learning Consortium Inc., 2003). 

The IMS Content Packaging specification outlines a method for organizing files into 

logical learning units called a content package.  The package is made up of a manifest 

file which outlines metadata for the package as a whole (usually using the LOM format 

as described previously), a set of organization hierarchies outlining how smaller units of 

learning should be arranged, a collection of references to digital assets (e.g. particular 

files in the package) which in turn include descriptive metadata, and potential sub-

manifests which effectively allow for the nesting of content packages within one an-

other. 

A content package fully encompasses a learning object in the sense that it includes all 

digital resources a Learning Content Management System (LCMS) would require to dis-

play that object to a learner.  This specification is widely supported by a number of dif-

ferent authoring tools and environments. 

Organization hierarchies or portions of organization hierarchies can be further se-

quenced using the IMS Simple Sequencing specification.  This specification provides a 

more general data model for learning activities, where each activity is hierarchically ar-

ranged and annotated with rules describing when the activity should be made available 

to a learner.  These rules provide simple tracking and adaptation abilities, by mapping 

possible activity outcomes (e.g. satisfied, status changed, etc.) to actions to be taken by 

the learning content management system.  Figure 2-3 depicts this data model. 
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Figure 2-3: Structure of IMS Content Package (IMS CP) with sequencing  

information, taken from (IMS Global Learning Consortium Inc., 2003) 

While tool support for the simple sequencing specification is sparse at present, it is be-

ing aggressively pursued by a number of LCMS vendors. 

2.1.6 Summary 

Learning objects are, in a general sense, an aggregation of ordered content meant to be 

reused in different educational situations to form larger units of learning.  This content is 

described with metadata that is used to aid in the search and retrieval of learning objects.  

While a number of metadata specifications are available for use, the trend is towards 

creating application profiles – collections of elements found in a variety of schemas 

which are more suitable for a given culture or domain.  Finally, learning objects are 

most often stored in some form of repository that may or may not be integrated into 

learning management systems. 

As instructional designers find and integrate learning objects into their courses, they 

adapt and modify these objects to better target their audience.  These adaptations are not 

only useful for the authors who create them, but may be used by software components or 
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learners who are browsing for information on a particular topic, or other authors who are 

looking for a starting point on which to base their derivative works. 

Capturing version changes for electronic documents is not trivial, but has been highly 

researched.  The following section briefly summarizes the state of the art in version con-

trol generally. 

2.2 State of the Art in Version Control 

Documents, both electronic and non-electronic, change over time.  While the nature of 

change is often domain specific, it is common for a document to be derived from others 

with the intent of either updating the information being presented, or providing different 

views on that same information.  The field of versioning is concerned with the manage-

ment of electronic documents as they change over time.  In the most general sense of the 

word, a version is a “form or variant of a type or original” (Merriam-Webster Inc., 

2004).  The act of creating and maintaining new versions is typically known as version-

ing, and has been a core concept explored in a number of computer science application 

areas including databases, knowledge representation, and Software Configuration Man-

agement (SCM). 

Section 2.2.1 briefly introduces three core principles that relate to version control.  This 

is followed with a survey of the commonly accepted version control terminology in sec-

tion 2.2.2.  Section 2.2.3 briefly summarizes the core functions that exist in version con-

trol implementations.  Finally, section 2.2.4 examines the overlap between the field of 

learning objects and version control, and identifies how current e-learning standards ad-

dress the need for versioning. 

2.2.1 Version Control Principles 

Versioning has been a central focus of research within the Software Configuration Man-

agement (SCM) community for over twenty years.  The research is mature, and has been 

applied successfully in a number of other communities including databases (Roddick, 

1995), hypermedia design (Bendix, Dattolo, and Vitali, 2001), and knowledge represen-

tation (Klein and Fensel, 2001).  Version control relies on a version model which identi-

fies the kinds of artifacts to be versioned, the properties associated with those artifacts, 
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and the changes that can be applied to artifacts to result in a version change (Conradi 

and Westfechtel, 1998).  Further, version control is guided by two central principles: 

• Sameness principle: Versioning requires a method by which two artifacts can be 

examined to see if they are of the same version (Conradi and Westfechtel, 1998).  

Being syntactically the same is often not enough to identify that two artifacts are 

of the same version; sometimes the ancestry of the artifact is important in deter-

mining the context that it will be used in.  In addition to this, syntactic compari-

son is often unachievable because it requires knowledge of the syntax being 

used. 

• Immutability of artifacts: Artifacts in a versioning model are considered immu-

table, in the way that changes to an artifact force the creation of new version of 

that artifact.  This ensures that the history and traceability of the artifact is never 

lost (Bendix, Dattolo, and Vitali, 2001). 

These lead to a derivative third principle: 

• Uniquely identifiable: Given the sameness and immutability principles, there 

must be some way of identifying each artifact, and each version of each artifact, 

uniquely.  This is usually implemented by giving each software artifact a unique 

object identifier (OID), and then giving each version of that artifact a unique ver-

sion identifier (VID) (Conradi and Westfechtel, 1998). 

2.2.2 Version Control Terminology 

A change to an artifact under version control creates a new version of that artifact, and 

each version of an artifact is given a VID.  The structure and values of a VID are often 

derived from other VIDs and OIDs to encode an overview of the history of the artifact 

being versioned.  In addition, a VID may also be made up of symbolic names or state-

ments commonly referred to as tags (Cederqvist, n.d.), which are given by users.  The 

properties common to all versions of an artifact are referred to as invariants (Conradi 

and Westfechtel, 1998).   Often the only invariant for a set of versions is the reference to 

the artifact they are a version of.  Nonetheless, it is useful in some versioning models to 
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enforce a given set of invariants.  Individual versions that disagree on an invariant prop-

erty are considered to be unrelated versions (versions of different artifacts altogether). 

The set of changes between two versions is referred to as a delta, and can be captured 

either as the set of differences between the two artifacts (called a symmetric delta), or a 

set of change operations that can be applied to one version of the artifact to create the 

new version (called a directed delta) (Conradi and Westfechtel, 1998).  Deltas are usu-

ally accompanied by human readable comments in the form of logs which outline the 

semantics or significance of the changes that have been made.  Further metadata, such as 

the date of the change and the author of the change, are attached to deltas in an imple-

mentation specific manner. 

Versions that are meant to replace previous versions are called revisions, while versions 

that are meant to coexist with previous versions are called variants (Conradi and West-

fechtel, 1998).  The set of all revisions and variants of an artifact is known as a revision 

group.  The reason for changes in an artifact is domain dependant; Conradi and West-

fechtel cite bug fixes, extending functionality, and changes in dependencies as common 

reasons for creating new versions when dealing with software artifacts (Conradi and 

Westfechtel, 1998), while Noy and Klien identify changes in a domain, conceptualiza-

tion of a domain, or specification of a domain as reasons for change in ontology based 

knowledge representation systems (Noy and Klein, 2002). 

Version control systems typically represent the relationships within revision groups us-

ing linear sequences, trees, graphs, and grids.  The most commonly used form of repre-

sentation is a hierarchical directed acyclic graph.  Nodes in the graph represent different 

versions of an artifact, with the root nodes representing initial artifacts.  Nodes further 

down the hierarchy represent versions created over time, and each node has a name 

identifying that node as a revision or a variant.  Edges in the graph represent deltas and, 

while tags and logs are rarely represented, they are sometimes attached as textual notes 

to nodes and edges respectively.  An artifact that is connected with two or more incom-

ing edges is a merged artifact – a version that is a partial subset of the union of the ver-

sions that are its parents in the revision graph. 
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Names of the nodes in the reversion graph are version identifiers VIDs, and are usually 

derived from the VID of previous versions.  The root nodes of the graph are either OIDs, 

or simple VIDs that are unique to the system.  The format of a VID is often two num-

bers separated by a period.  The first number is known as the major number while the 

second is referred to as a minor number.  Significant changes to the artifact that may or 

may not be backwards compatible with previous versions result in the major number 

being incremented.   Changes that are less significant and are backwards compatible 

with previous versions result in the minor number being incremented.  The set of revi-

sions descending from the root of the graph are referred to as the trunk, while variants 

are represented as branches off of this trunk.  To differentiate between a branch node 

and a trunk node, branch nodes generally append a period and a new VID to the VID of 

the node they are derived from. 

Figure 2-4 shows an annotated example of a revision graph.  In this revision group there 

is one artifact that has undergone a number of minor revisions, followed by a single ma-

jor revision.  Several branches are created to allow for parallel development of the arti-

fact by other people, and are later merged back together.  Note that the VID of a merged 

version can be chosen as a branch off of either of the versions it is derived from, de-

pending on the context of the newly created version.  The example shown indicates that, 

while the merged version derives from versions 1.3 and 1.2.1.1, the author has identified 

it as superseding the work done in 1.3 and has added it to the trunk of the development 

line.  
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Figure 2-4: Annotated revision graph 

2.2.3 Version Control Functions 

A number of different implementations for version control exist, including RCS (Tichy, 

1985), CVS (Berliner, 1990), and SVN (Collins-Sussman et al., n.d.).  While differing in 

the specifics, these implementations share a number of features: 

1. They are all logically centralized.  While many version control repositories can 

be physically distributed on the back end to improve performance, most use a 

centralization OID and VID naming scheme to ensure consistency.  At the time 

of writing the author could find no examples of logically decentralized version 

control systems in the SCM literature. 

2. They use low level directed deltas.  These deltas may be either forward deltas, 

where the artifact is stored in its initial form, and new versions are recreated 

when needed, or reverse deltas, where the newest version is stored in its entirety, 

and deltas are applied to retrieve older versions.  Deltas are encoded either at a 

byte level, for binary artifacts (e.g. images), or at a character level for text ob-

jects (e.g. source code).  Reverse deltas are the most popular approach, as they 

allow for the immediate access to the latest revision, and O(n) access to older 

versions. 

3. They allow for rollbacks of an artifact to an earlier version by applying the ap-

propriate deltas.  These rollbacks can then be committed as new versions to the 

software repository. 
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4. They support the author-assisted merging of two versions into some new version.  

While most tools attempt to do this merging automatically, the lack of knowl-

edge of the underlying semantics of the item being version requires that often an 

author must be included in the process. 

2.2.4 Versioning of Learning Objects 

Learning objects are in constant evolution and are often associated with versioning in-

formation.  Consider the case of a traditional textbook as a learning object.  Textbooks 

have edition number and printing dates, roughly corresponding to major and minor num-

bers.  They also often contain a preface that represents the logs which document the 

changes (deltas) that have occurred.  Often several volumes on related topics are merged 

together for special edition texts that are more comprehensive.  Learners use this ver-

sioning information when assessing a textbook’s suitability for a particular course.  A 

previous edition of a textbook may be a poor helper for a course, though sometimes the 

differences are minor enough that a previous edition will work just as well as a current 

edition.  Previous editions may carry other benefits, such as being easier to find, or 

cheaper to purchase. 

Current metadata standards have little or no support for the versioning of learning ob-

jects.  The Dublin Core contains only two useful elements, the source element and the 

relation element.  The source element identifies the resource that the new learning ob-

ject was derived from, using some uniquely identifying index (usually in the form of a 

Uniformed Resource Identifier (URI)).  There are no options to further annotate this 

element to capture how the current learning object differs from the previous one.  The 

relation element allows for a more general form of expressing the relationships between 

two resources.  It allows for a resource to indicate that the current learning object is ei-

ther a variant of another learning object, or a revision of another learning object by using 

the modifiers IsVersionOf and Replaces respectively.  Two other modifiers, HasVersion 

and IsReplacedBy allow original learning objects to identify the same relationship with 

respect to their derivative works. 

The creation of the LOM was influenced by a number of different metadata specifica-

tions, and thus it contains many mechanisms that are similar in name and function to 
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those in the Dublin Core.  One of these mechanisms is the relation element that allows 

authors to describe relations using a simple vocabulary.  This vocabulary corresponds 

closely to that of the Dublin Core, and allows for using the hasversion and isversionof 

keywords.  The relation element also allows for identifying a derivative object similar to 

the source element, by using the isbasedon and isbasisfor modifiers keywords. 

Also included in the LOM is the lifecycle category, which contains a number of data ele-

ments that describe the history of a learning object.  The version element describes the 

edition of the object using human readable plain text, while the status element describes 

the completion status of the object using a small, predefined vocabulary (draft, final, re-

vised, or unavailable).  The contribute element identifies what entities have influenced 

the history of this learning object (such as other authors, organizations, etc).  

While both the Dublin Core and the LOM provide solid foundations for describing a 

simple revision tree, they fail to offer full support of a version model.  Indeed, in an 

analysis of the LOM done by CanCore, it is stated as only generally addressing the con-

cerns of versioning, and even then it does “not do so in a way that is sufficient for the 

requirements of many projects” (CanCore Initiative, 2002).  Instructional designers or 

software components who are interested in determining the significance of a given 

change to a learning object are forced to obtain versions of both learning objects, and 

attempt to reason about the metadata.  Comparing metadata records is not a trivial task – 

the majority of elements in both the Dublin Core and the LOM are meant for human 

consumption and would be difficult or impossible for a software agent to interpret.  Vo-

cabularies are often left open ended, and force implementers to either come up with their 

own terminology or adopt a given application profile.  This leads to data that is difficult 

even for intelligent software components to understand when trying to dynamically ob-

tain and compose learning objects into larger educational units.  

The remainder of this thesis will address these issues by presenting a formal model for a 

learning object, identifying the artifacts of this model that are important when support-

ing versioning, and outlining a process for capturing and codifying the nature of change 

associated with versioning. 
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Chapter 3  

A Model for Learning Object Versioning 
Conradi and Westfechtel identify that a core component of versioning is the version 

model which identifies the kinds of artifacts to be versioned, the properties associated 

with those artifacts, and the changes that can be applied to artifacts to result in a version 

change (Conradi and Westfechtel, 1998). 

In practice, most version control systems also capture the nature of changes as they are 

applied to artifacts under version control.  These changes can be captured both as a col-

lection of structural operations (how the artifact has changed with respect to its internal 

structure) and as a collection of semantic operations (how the artifact has changed with 

respect to its meaning).  Semantic operations can be further broken down into computer 

understandable semantic changes, and human understandable changes.  Section 3.1 out-

lines a version model for learning objects.  Section 3.2 provides bindings of this model 

to current web specifications used for learning objects, in particular the Extensible 

Markup Language (XML) and the IMS Simple Sequencing Specification (IMSSS).  Sec-

tion 3.3 identifies how machine-readable semantics can be attached to learning object 

change sets, and provides two example vocabularies for this purpose.  Finally, section 

3.4 concludes the chapter with a general discussion of the benefits and limitations of this 

approach. 

3.1 Learning Object Version Model 

3.1.1 Artifacts and their properties 

There is rough consensus that a learning object is an ordered aggregation of content, of-

ten referred to as reusable information objects (Barritt and Lewis, 2002).  This aggrega-
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tion is annotated with descriptive metadata that allows for discovery by both humans 

and software components.  The order of content included in a learning object can take a 

number of forms, including linear (e.g. that implied in (Barritt and Lewis, 2002)), hier-

archical, and completely unstructured.  At the simplest level, a learning object could 

contain no sequencing information and only one information object (referred to by 

(IEEE, Inc., 2002) as being atomic).  From a purely structural viewpoint, both the granu-

larity and the breadth of information being shared is unrelated to the number of learning 

objects being created.  For example, an instructional designer could create an atomic 

learning object that represented a whole course, while another designer could take just 

one lesson in that course and break it up into several smaller learning objects that are 

hierarchically arranged.  Further one designer may decide to break an overview of a 

topic into a number of different learning objects, while another designer may create a 

single object that goes into the content in great depth. 

Similar to the object oriented or procedural programming paradigms, learning objects 

can aggregate one another either by value or by reference.  Typically, several smaller 

learning objects are packaged up into a single file along with a manifest outlining the 

structure of the objects, and is delivered as itself as a learning object.  This example of 

content packaging is similar to “passing by value” or “deep copying” available in tradi-

tional programming languages.  To contrast, learning objects may also be arranged in a 

manifest and referenced (typically through URLs, though other schemes are available) 

remotely, similar to “passing by reference”.  Both approaches have their benefits and 

detriments – formulating a learning object by value ensures to the instructional designer 

that the learning object will not be impacted by negative changes to the original content.  

However, new changes (which may be beneficial) are not reflected in the work, increas-

ing the amount of time an instructional designer must spend on updating a course. 

The notion of whether an instructional designer should choose to reference or deep copy 

a learning object when designing a course depends on a number of factors, including the 

technology available, the license for the content being copied, and the trust the designer 

holds in the third party to update the content appropriately for the context being taught.  

While this is an important issue for learning object design teams, it is beyond the scope 

of this thesis.  Instead, this work makes the assumption that aggregated learning objects 
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follow a referential model, where aggregates are defined by a single piece of content (or 

a content packaging file), and a version identifier which shows which version of that 

content should be used. 

To ensure clarity the following terms and their definitions will be used to describe both 

the artifacts and properties of those artifacts in the version model: 

Definition 1. Primitive learning object: A learning object that contains a single 

piece of content with a descriptive set of metadata.  This object has no depend-

encies with other learning objects (e.g. sequencing information), and may be 

made up of an arbitrary number of digital resources.  This object has one single 

entry point (e.g. a content packaging manifest). 

Definition 2. Sequenced learning object: A learning object that contains an ag-

gregation of either other sequenced learning objects or primitive learning ob-

jects.   Aggregation is accomplished by holding a reference in the form of a URL 

to the aggregated objects.  A sequence learning object also contains a single set 

of metadata which describes it as a whole.  Sequenced learning objects contain 

no content of their own. 

Each learning object, sequenced or primitive, can also include annotations in the form of 

metadata.  Metadata is typically added as key/value tuples where the key is related to 

some ontology of terms (such as those given in (IEEE, Inc., 2002) or (DCMI Usage 

Board, n.d.)) and the values are either a selection given from a constrained vocabulary 

(if defined in the ontology) or free form text.  While some metadata profiles further ar-

range key/value pairs into a directed tree, this can be represented as a set of tuples as-

suming the original tree does not contain duplicate paths.  Thus a third definition for the 

product space includes: 

Definition 3. Learning object metadata: A set of key/value tuples that describes 

a given learning object.  Instead of prescribing a specific metadata profile to use, 

each key is prefixed with a unique namespace identifier linking that key to the 

ontology which defines it.  For instance, the following set contains two metadata 

entries describing the title and author of a learning object using the LOM and 

Dublin Core metadata vocabularies respectively: 



 34 

{ ( lom:title , “Introduction to Java” ) , ( dc:author , “Chris Brooks” ) } 

3.1.2 Version model change set and the immutability principle 

The immutability principle described in section 2.2.2 states that all artifacts under ver-

sion control remain unchangeable, and that attempted modifications to an artifact result 

in a new version of that artifact.  Thus a change to any portion of the learning object 

(content or metadata) results in a derivative learning object being created.  The differ-

ence between an initial learning object and a derivative of that learning object is referred 

to as a change set.   

Unlike traditional software content repositories, learning objects that may be used by 

one instructional designer can be distributed into many different repositories.  These re-

positories generally do not have a way of synchronizing the identification of, searching 

for, and publishing of learning objects.  It then makes sense to attach the change set for a 

learning object with that learning object, so authoring environments and delivery tools 

can inspect the history of the object regardless of where it originated from.  Thus the 

definition of a sequenced and primitive learning object can be expanded to indicate this 

coupling: 

Definition 4. Learning object change set: A learning object change set is a set of 

repeatable operations that can be applied to create a particular version of a learn-

ing object.  This change set includes structural changes (e.g. the addition of con-

tent for a primitive learning object, or the addition of sequencing information for 

a sequenced learning object) as well as semantic (metadata) changes.  This is a 

forward delta. 

The structure of a change set for content is highly dependent on the format of the con-

tent that has been changed.  For instance, content in textual form could contain a change 

set which identifies the lines and characters that have changed and what their new values 

should be.  This technique does not work well for binary files which may have to in-

clude byte offsets and new byte values to change.  In addition to these low level data file 

format change sets, some kinds of content may be able to be versioned at multiple levels 

of granularity.  Consider the case of a learning object which contains an image encoded 

in the Scalable Vector Graphics (SVG) format.  The SVG specification bases its data 
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model on the XML Document Object Model (DOM) (Ferraiolo, Fujisawa, and Jackson, 

2003).  In doing so, an SVG document can be described using the XML DOM.  The 

XML DOM in turn uses Unicode characters to serialize the data model to disk.  Thus, an 

SVG image could be versioned at at least three different layers of granularity; the SVG 

model layer, the XML data model layer, or the XML serialization layer. 

The diversity of data models for learning objects as presented in Chapter 2 makes it dif-

ficult to describe what form the content of a learning object should take.  This in turn 

makes coming up with a single versioning change set model for all learning objects dif-

ficult.  Instead, the approach taken is to come up with a lightweight abstract change set 

model, then provide data type specific vocabularies to use with this model. 

A brief survey of version control software, as well as learning object data file formats 

suggests the following three items should be captured for learning objects as artificats 

under version control: 

• Human readable description of the change (logs) 

• A path  to the item that changed (e.g. character position, byte offset, line number, 

xml element, node in a data model graph) 

• A transformation describing how the item was changed, or what the new value of 

the item is and how to revert to the old value (if reverse deltas are desired) 

Of these three elements, the logs are optional and may apply to any number of specific 

changes that an author has done.  The path and transformation items, however, are re-

quired and are intended to be consumed directly by a software component responsible 

for displaying various versions of a learning object. 

As a property associated with both sequenced and primitive learning objects, metadata 

entries also need to have change sets associated with them.  Metadata keys are con-

strained to a specific vocabulary, and items within a vocabulary often share a relation-

ship with one another based on some given data type.  For instance, entry 5.4 in the 

LOM metadata profile contains the key “semantic density” which is made up of five 

levels; very low, low, medium, high, and very high.  An understanding of the structure 

of this data type (an ordered enumeration) can be useful for an authoring tool – entries 
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can then be searched or visualized taking into account bounds on individual metadata 

keys.  For instance, a vocabulary aware repository could visually display learning ob-

jects with a low semantic density level of orange, and deepen the colour to red for 

higher semantic density levels.  This allows a user of the repository to quickly locate 

those items of relative high or low semantic density, while holding other search terms 

constant. 

A change in a metadata entry then produces two measurable changes, a change in the 

value of that entry (the content), and how the entry has been transformed with respect to 

its data type.  Continuing with the example of semantic density, if there exists a learning 

object with a semantic density of “low”, and a derivative is made where the semantic 

density is “high”, the change set could be codified as “increased”.  Section 3.2 outlines 

two possible data vocabulary options. 

The small size of metadata entries and their semantic transformations (usually a single 

word) makes it reasonable to just store the current and previous values of those entries 

instead of using directed deltas.  Determining the value of the semantic transformation 

can be done in two different ways: 

1. The learning object software, potentially an editing environment, repository, or 

delivery tool, can derive this value automatically.  This requires that the software 

has knowledge of the underlying data types that exist within the metadata pro-

files being used.  For instance, an authoring environment that understands the 

LOM schema could automatically fill in the transformation value of “increased” 

when the author provides higher values of the semantic density.
2
 

2. Require that the learning object author provides an explicit representation of the 

change in the learning object version history.  This increases the size of the his-

tory (and thus the size of the learning object), but removes the requirement that 

the software being used by the author needs to understand metadata profile data 

types. 

                                                 
2
 Strictly speaking, the published machine-readable LOM schema is not enough to provide for this level of 

reasoning.  This schema uses the XML Schema enumeration data type in an unordered fashion.  An appli-

cation wanting to provide this level of functionality would have to augment the formal LOM schemas 

with further knowledge. 
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Adopting the latter approach does not restrict software that understands the metadata 

profiles being used from filling in appropriate change notations in the version history.  

Thus a model which supports the explicit representation of change semantics within it is 

the most flexible approach.  Taking this into account, the following three items must be 

captured for each semantic change: 

• The change set transformation of the metadata entry (e.g. “increased”, or “subset 

of previous value”) 

• The perspective of this transformation (the ontology key to which it pertains) 

• The new value of the entry (e.g. "low") 

Table 3-1: Change set data model 

Nr Name Explanation Cardinality Ordered Datatype 

1 History The set of changes that have 

occurred to this learning object  

1 n/a - 

1.1 Change A container for revision infor-

mation.  Changes are temporally 

ordered 

* ordered - 

1.1.1 Structural A change in the structure of the 

learning object (e.g. XML, se-

quencing for complex objects, 

etc) 

* ordered - 

1.1.1.1 Path Identifier which references that 

portion of the content which has 

changed (content specific) 

1 n/a String  

1.1.1.2 Transformation Transformation which changes 

the content given by the path to 

the new content (content spe-

cific) 

1 n/a String  

1.1.2 Semantic A change in the metadata asso-

ciated with a learning object 

* ordered - 

1.1.2.1 Value The new value of the metadata 

entry 

1 n/a Vocabulary (State) 

1.1.2.2 Transformation The manner by which the meta-

data has changed 

1 n/a String 

1.1.2.3 Perspective The key for the metadata entry 

(e.g. lom:semantic-density, 

dc:author) 

1 n/a String 

1.1.3 Log Human readable description of 

the changes 

1 n/a String  

1.1.4 Vid A version identifier for this 

change 

1 n/a String  

1.2 Identifier A unique identifier for this 

learning object 

1 n/a String  

 

Table 3-1 provides an overview of the change set data model.  In this model some ele-

ments may appear multiple times as indicated by a cardinality level greater than one.  
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Further, some elements must be presented in an ordered fashion, such as the structural 

change values.  Appendix A defines a normative binding specification for this model 

using XML Schema. 

The uniquely identifiable principle described in section 2.2.1 is supported both at the 

object level and at the version level by use of the "Identifier" and "Vid" elements respec-

tively.  These elements must be represented by globally unique strings such as a Uni-

formed Resource Indicator (URI).  While not prohibited, a Uniformed Resource Locator 

(URL) is a poor choice for a learning object identifier, as objects are expected to be able 

to move between repositories. 

3.1.3 Sameness Principle 

The notion of version control requires that a method exist to determine whether two arti-

facts are of the same version, called the sameness principle.  For this method of version 

control, the sameness method can be defined as follows: 

Definition 5. Sameness method: Ensuring that the set of change operations, ex-

cluding the human readable log, for two or more learning objects result in both 

structurally and semantically identical states after each application. 

This allows for different implementations to capture structural changes in different 

ways, but ensures that once each set of structural changes is applied, the resulting learn-

ing objects are identical. 

3.1.4 Conclusions 

By keeping the transformation values for both structural and semantic changes abstract, 

this model is domain, vocabulary, and granularity neutral.  By considering the change 

set of a learning object to be an integral part of that object, the version model can be 

used in distributed environments.  Finally, by providing a binding of the version model 

to an XML schema that supports namespaces, it makes including version information 

with other XML based e-learning specifications (such as the IMS Content Packaging or 

Simple Sequencing specifications) easy. 
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3.2 Vocabularies for Expressing Learning Object Structure 

3.2.1 Primitive Learning Objects 

Learning object data formats range widely depending on the intended use of the object.  

For instance, the CAREO learning object repository includes learning objects of various 

graphic types, archived collections of files, URL’s to external resources, and XML 

documents.   

The Extensible Markup Language (XML) is a mature and reasonable technology for de-

scribing the structure of primitive learning objects.  XML was born out of the desire to 

come up with a generalized markup language based on experiences with the Hypertext 

Markup Language (HTML) (Pemberton et al., 2000), and the Standard Generalized 

Markup Language (SGML) (International Organization for Standardization (ISO), 

1986).  It has seen rapid adoption in the areas of content creation, and a number of typo-

graphical formats (e.g. the Extensible HyperText Markup Language (XHTML) (Steven 

Pemberton et al., 2000), and the DocBook document format (OASIS DocBook Techni-

cal Committee, 2002) exist.  Anecdotal evidence suggests that, while new learning ob-

jects are being created in a variety of formats, well-formed XML documents are a popu-

lar choice (e.g. (Cooke et al., n.d.)).  This section will deal with how the version model 

can be applied to primitive learning objects that use XML as their underlying data 

model. 

Every well-formed XML document conforms to the Object Model (DOM) (Wood et al., 

2000).  This model provides a platform and language-neutral API for interaction with 

the underlying document.  This interaction includes navigation, retrieval, and modifica-

tion of portions of the document.  Instantiations of the XML DOM form an in-memory 

hierarchical tree of a series of seven kinds of data structures; an XML declaration, char-

acter data, elements, attributes, entity references, comments, or processing instructions.   

Using the API, the DOM can be serialized to and from character data stored in a variety 

of character encoding formats.  When serialized to the XML data file format, only state 

information about the document is kept, not a history of how the document was created.  

This lack of historical record makes version control impractical, as a serialized  

snapshot of the DOM would need to be taken after invoking any method on the DOM 



 40 

API that may modify the underlying document.  For small changes to a document, the 

resulting history would include a huge amount of data that would be impractical for 

even the most ambitious repositories to keep. 

Instead, it is useful to describe a set of bindings for invocations against the DOM API.  

By evaluating portions of this change set, an authoring tool can recreate an XML docu-

ment into any previous state it contained.  In addition, since a given method invocation 

on the DOM results in only the input parameters for completing that invocation, change 

sets are typically smaller than serializing the whole document for each change. 

3.2.1.1 A DOM Change Set Vocabulary 

The DOM API is made up of a number of interfaces which contain methods and con-

stants defined for navigation, retrieval, and modification of one or more DOM instances.  

By invoking operations on these interfaces, a directed acyclic graph of nodes is formed.  

Only those methods which actually change the structure or values of nodes within a 

DOM tree need be captured to maintain reproducible version control.  In addition, even 

though the DOM is only a set of interfaces, models are considered structurally isomor-

phic in that different implementations may build the model differently, but the result 

will be the same (Le Hors et al., 2004).  Figure 3-1 provides a UML class diagram of the 

DOM including only those interfaces and methods that perform structural changes to the 

DOM. 
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Figure 3-1: UML class diagram of the DOM interfaces 

While the DOM API allows the creation of and modification of more than one document 

at a time, we have considered only the case of interactions with a single document.  Be-

cause of this, the methods in the DOMImplementation interface create both the default 

document and the default document type declaration. 

The DOM API is meant to be used programmatically, where nodes can be retrieved by 

reference from a document using the navigation methods and then modified.  Serializing 

successive calls to Node objects to traverse the DOM tree would be extremely verbose.  

An alternative approach is to use the XML Path Language (XPath) (Clark and DeRose, 

1999) to denote which node is in current scope.  This language represents paths through 

the DOM tree structure as strings, similar Uniformed Naming Convention (UNC) paths 

on a filesystem.  It allows for the addressing of nodes by type, and has semantics for dis-

tinguishing between element nodes, text nodes, attributes, processing instructions, and 

entities.  XPath has become a de facto standard for querying a DOM tree, and most 

XML parsers have extended the DOM interfaces to include XPath querying options. 

To fit into the version model, both the transformation and the path portions of the 

change set must be able to be serialized into string values suitable for including within 
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XML attributes.  While the choice of syntax for this is somewhat arbitrary, the Extended 

Backus-Naur Form (EBNF) is a well-used simple notation for capturing data semantics.  

Appendix B provides EBNF for describing those methods shown in Figure 3-1, while 

(Clark and DeRose, 1999) provides EBNF for describing XPath statements.  The Xpath 

statements and method operations are bound to elements 1.1.1.1 (Path) and 1.1.1.2 

(Transformation) of the version model respectively. 

3.2.1.2 Example 

Consider the two primitive learning objects shown in Code Listing 3-1 and Code Listing 

3-2 which show an HTML based learning object written in well-formed XML. 

Code Listing 3-1: An example HTML document in well-formed XML 

[01] <?xml version="1.0" encoding="UTF-8"?> 
[02] <html> 
[03]   <body> 
[04]   <p>The quick brown fox.</p> 
[05]   </body> 
[06] </html> 

Code Listing 3-2: A possible derivative version of the document  

described in Code Listing 3-1 

[01] <?xml version="1.0" encoding="UTF-8"?> 
[02] <html> 
[03]   <head> 
[04]     <title>All about foxes</title> 
[05]   </head> 
[06]   <body> 
[07]     <p align="center">The quick brown fox.</p> 
[08]   </body> 
[09] </html> 

One could imagine the set of DOM interactions that would need to take place to convert 

the original object into the revised form.  First, a couple of new elements would have to 

be created to represent the <head> and <title> tag blocks.  Next, a new text node would 

have to be created as a child of the title tag, and have its CDATA section set to "All 

about foxes".  Finally, a new paragraph tag would need to be introduced as a child of the 

body tag, and have an attribute "align" added.  The next section describes a vocabulary 

for capturing these kinds of invocations. 
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Code Listing 3-3 provides an example of how these changes could be bound to the data 

model described in section 3.1.  This listing begins by defining a unique identifier for 

the object as a whole on line 02, and two change fragments on lines 03 and 12 respec-

tively.  The first change fragment creates the initial document given in Code Listing 3-1, 

and populates it with the elements and attributes corresponding to the first HTML 

document.  This fragment is given a unique VID on line 03, as well as a short log file 

intended for human consumption on line 10.  The second change fragment contains a 

number of statements which select nodes from the already instantiated XML document.  

These statements then modify this document using the change set vocabulary described 

in Appendix B.  The result is an in-memory copy of the document described in Code 

Listing 3-2.  

Code Listing 3-3: Example structural change set 

[01] <history xmlns="http://cs.usask.ca/~cab938/love/xml/11.01.2004" 
[02]          identifier="http://cs.usask.ca/~cab938/love/examples/2"> 
[03]   <change vid="urn:love:vid:049dd7a0-4c78-11d9-9669-0800200c9a66"> 
[04]     <structural path="" transformation="createDocument" />  
[05]     <structural path="/" transformation="createElement;0;html" />  
[06]     <structural path="/html" transformation="createElement;0;body" />  
[07]     <structural path="/html/body" transformation="createElement;0;p" />  
[08]     <structural path="/html/body/p"  
[09]                 transformation="createTextNode;0;The quick brown fox." />  
[10]     <log>Created a file about the fox.</log> 
[11]   </change> 
[12]   <change vid="urn:love:vid:75bbbfe0-4c7a-11d9-9669-0800200c9a66"> 
[13]     <structural path="/html" transformation="createElement;0;Head" /> 
[14]     <structural path="/html/head"  
[15]                 transformation="createElement;0;Title" /> 
[16]     <structural path="/html/head/title"  
[17]                 transformation="createTextNode;0;All about foxes" />  
[18]     <structural path="/html/body/p"  
[19]                 transformation="createAttribute;align" />  
[20]     <structural path="/html/body/p/@align"  
[21]                 transformation="createTextNode;;center" />  
[22]     <log>Added a title.</log> 
[23]   </change> 
[24] </history> 

3.2.2 Sequenced Learning Objects 

The XML DOM binding created for primitive learning objects is useful for any learning 

object which follows an XML specification.  For instance, the IMS Simple Sequencing 

specification provides explicit bindings to the XML data model.  However, this specifi-

cation also provides its own well defined data model.  By expressing the version 
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changes in terms of the IMSSS data model, the semantics of the changes are preserved.  

This decouples the version history of the learning object from the underlying syntax that 

the object is stored in.  This decoupling provides the ability to maintain a version history 

even when the underlying storage format changes. 

An instance of this sequencing data model can be represented as a tree of activity nodes.  

Each node represents a single learning activity, and child nodes represent aggregate 

learning activities.  All activities, whether leaf nodes or not, can reference content (usu-

ally as IMS Content Package Item elements) directly.  Finally, each activity node is as-

sociated with two sets of rules.  The first set of rules, called sequencing rules, is further 

broken down into three groups; preconditions, exit actions, and post conditions.  These 

rules are evaluated by the learning management system before, while, and after the ac-

tivity has been delivered respectively.  These rules determine the flow of control through 

the activities child activities (or learning objects).  The second set of rules, called rollup 

rules, is used to set values in learning management system tracking model for a given 

activity.  The values are then read by the system when evaluating the sequencing rules 

of parent activities. 

It is important to note that this specification is wide ranging in scope, and also includes 

models for tracking information, flow of control, end-user navigation requests, and de-

livery.  While versioned copies of this information may be useful (e.g. to rebuild the 

state of a delivered activity at any moment in time, or the “walk-through” the specific 

actions of a learner as they progressed through an activity), they are considered outside 

of the scope of the authoring process, and will not be addressed in this work. 

A vocabulary for describing changes to a sequenced learning object can then be thought 

of as an API for modifying a tree.  Similar to the primitive learning objects, a full API 

may include navigation and retrieval functions, but only those functions which modify 

the structure or values in the tree need be captured for version control.  Methods avail-

able on the tree structure itself control the layout of activities and aggregate activities, 

while methods available on the nodes control modifications to rule behaviors.   
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Code Listing 3-4: EBNF describing activity tree operations 

[01] <separator>   ::= ";" 
[02] <path>    ::= <NONNEGATIVE INTEGER> | <path> <separator> 
[03]          <NONNEGATIVE INTEGER> | ""  
[04] <vid>    ::= <NONNEGATIVE INTEGER> 
[05] <title>    ::= <STRING> 
[06] <child position>  ::= <NONNEGATIVE INTEGER> 
[07] <new activity>  ::= "NewActivity" <separator> <title> <separator>  
[08]         [<child position>] 
[09] <delete activity>  ::= "DeleteActivity" <separator> 
[10] <insert object>  ::= "InsertLearningObject" <separator> <url> 
[11]          <separator> <vid> <separator> <child position> 
[12] <delete object>  ::= "DeleteLearningObject" <separator> 

Out of the statements described, only a few of them are bound to nodes within the 

change set XML document.  In particular, the <path> statements can be bound to ele-

ment 1.1.1.1, while the <insert activity>, <delete activity>, <insert object> and <delete 

object> statements can be bounds to element 1.1.1.2. 

Consider the XML document fragment in Code Listing 3-5 which outlines a portion of a 

version control record for an activity tree. 

Code Listing 3-5: Version control record for activity tree 

[01] <history xmlns="http://cs.usask.ca/~cab938/love/xml/11.01.2004" 
[02]          identifier="http://cs.usask.ca/~cab938/love/examples/1>                                                                    
[03]   <change>                                                                                                                               
[04]     <structural path="" transformation="NewActivity;General;" />  
[05]     <structural path="0" transformation="NewActivity;Navigating 100;0" /> 
[06]     <structural path="0" transformation="NewActivity;Navigating  
[07]       Windows;1" />  
[08]     <structural path="0" transformation="NewActivity;Using the Web;2" /> 
[09]     <log>Created initial activities.</log> 
[10]   </change> 
[11]   <change> 
[12]     <structural path="0,0" transformation="InsertLearningObject; 
[13]       file:///c:/module1/imsmanifest.xml;0;0" />  
[14]     <structural path="0,0" transformation="InsertLearningObject; 
[15]       file:///c:/module2/imsmanifest.xml;34;1" /> 
[16]      <structural path="0,1" transformation="InsertLearningObject; 
[17]       file:///c:/module3/imsmanifest.xml;21;0" /> 
[18]     <log>Added three learning objects</log> 
[19]   </change> 
[20]   <change> 
[21]     <structural path="0,1" transformation="DeleteActivity;" /> 
[22]     <log>Removed Navigating 100 from activity list</log> 
[23]   </change> 
[24] </history> 

This change history describes three separate versions of a learning object sequence.  The 

first version, identified by lines [03] through [10], creates a new activity tree (line [04]), 
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then adds two child nodes (line [05] and [06]).  The second version modifies this activity 

tree by adding references to primitive learning objects (lines [12] through [17]).  Finally, 

the third version removes one of the activities in the tree, which has the effect of remov-

ing all activities and primitive objects associated with that activity.  Figure 3-2 shows 

the sequencing document progression over time. 

 

Figure 3-2: History of an example IMSSS activity tree 

Sequencing rules in simple sequencing documents are attached to activity nodes and are 

of the general form: 

 If [conditions] then [action] 

where both conditions and action take their form from the IMS Simple Sequencing Se-

quencing Rule Description vocabulary (IMS Global Learning Consortium Inc., 2003).  

Code Listing 3-6 provides a comprehensive change set definition for sequencing rules 

using the vocabulary defined by the IMS.  Similar to the change set definition for activ-

ity trees, the <path> element is bound to element 1.1.1.1 of the abstract data model, 

while the <insert rule>, <delete rule>, and <modify rule> definitions are bound to ele-
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ment 1.1.1.2 of the data model.  It is important to indicate that designs for this vocabu-

lary were limited by the sequencing specification, which indicates that rules are in an 

unordered set and do not have unique identifiers.  Thus to modify or delete a rule an off-

set can not be used (as was done in the activity tree example).  Instead, the full content 

of the rule must be evaluated. 

Code Listing 3-6: EBNF describing sequencing rule changes 

[01] <separator>   ::= ";" 
[02] <path>    ::= <NONNEGATIVE INTEGER> | <path> <separator> 
[03]          <NONNEGATIVEINTEGER> | ""  
[04] <condition>   ::= "All" | "Any" 
[05] <rule conditions>  ::= <rule condition> <separator> <operator> 
[06]          <separator> <objective> | <rule conditions> 
[07]          <separator> <rule condition> <separator> 
[08]          <operator> <separator> <objective>  
[09] <objective>   ::= <STRING> 
[10] <operator>   ::= "Not" | "NO-OP" 
[11] <rule condition>  ::= "Satisfied" | "Objective Status Known" | 
[12]          "Objective Measure Known" | "Objective Measure  
[13]          Greater Than" | "Objective Measure Less Than" | 
[14]          "Completed" | "Activity Progress Known" | 
[15]          "Attempted" | "Attempt Limit Exceeded" | "Time 
[16]          Limit Exceeded" | "Outside Available Time Range" 
[17]          | "Always" 
[18] <action>   ::= <pre action> | <post action> | <exit action> 
[19] <pre action>   ::= "Skip" | "Disabled" | "Hidden from Choice" |  
[20]          "Stop Forward Traversal" | "Ignore" 
[21] <post action>   ::= "Exit Parent" | "Exit All" | "Retry" | "Retry  
[22]          All" | "Continue" | "Previous" | "Ignore" 
[23] <exit action>   ::= "Exit" | "Ignore" 
[24] <seqrule>   ::= <condition> <separator> <rule conditions>  
[25]          <separator> <action> 
[26] <insert rule>   ::= "InsertRule" <separator> <seqrule> 
[27] <delete rule>   ::= "DeleteRule" <separator> <seqrule> 
[28] <modify rule>   ::= "ModifyRule" <separator> <seqrule> <separator>  
[29]          <seqrule> 

Rollup rules are similar in form to sequencing rules, and are also attached to activity 

nodes in the activity tree.  While sequencing rules are used by the learning management 

system to inspect values in the tracking and objectives models and order child activities 

as appropriate, rollup rules are used to set values in the tracking and objective modules 

for a given activity.  Consider again the example given in Figure 3-2.  When the learning 

management system goes to evaluate the sequencing rules for the "General" activity, it 

inspects the tracking and objective models to determine appropriate values.  If the values 

for either "Navigation Windows" or "Navigating 100" can not be found, then the rollup 

rules for those activities are executed. 
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The general form of a rollup rule is: 

 If [child-activity] [conditions] then [action] 

The child-activity is optional and denotes that the rollup rule for this activity requires 

that child rollup-rules be evaluated first.  This allows for the chaining of rollup rules in a 

hierarchical up manner.  Child activity rules are not referenced directly, and instead are 

referenced using a vocabulary (e.g. "All", "Any", "At Least Count", etc.).  Both condi-

tions and actions are Boolean values, and an optional negation operator ("Not") exists 

for conditions.  Code Listing 3-7 provides a formal change set vocabulary for rollup 

rules. 

Code Listing 3-7: EBNF describing rollup rule changes 

[01] <separator>   ::= ";" 
[02] <path>    ::= <NONNEGATIVE INTEGER> | <path> <separator> 
[03]          <NONNEGATIVE INTEGER> | ""  
[04] <rollrule>   ::= <activities> <separator> <rule conditions>  
[05]          <separator> <action> 
[06] <insert rule>   ::= "InsertRule" <separator> <rollrule> 
[07] <delete rule>   ::= "DeleteRule" <separator> <rollrule> 
[08] <modify rule>   ::= "ModifyRule" <separator> <rollrule> <separator>  
[09]          <rollrule> 
[10] <activity_type>       ::= "All" | "Any" | "None" | "At Least Count" 
[11]          <separator> <INT> | "At Least Percent"  
[12]          <separator> <INT> 
[13] <combination_option> ::= "All" | "Any" 
[14] <activity>      ::= <combination_option> <separator> <actitivy_type> 
[15]  
[16]  
[17] <rule conditions>  ::= <rule condition> <separator> <operator> 
[18]          <separator> <objective> | <rule conditions> 
[19]          <separator> <rule condition> <separator> 
[20]          <operator> <separator> <objective>  
[21] <objective>   ::= <STRING> 
[22] <operator>   ::= "Not" | "NO-OP" 
[23] <rule condition>  ::= "Satisfied" | "Objective Status Known" | 
[24]          "Objective Measure Known" |  
[25]          "Completed" | "Activity Progress Known" | 
[26]          "Attempted" | "Attempt Limit Exceeded" | "Time 
[27]          Limit Exceeded" | "Outside Available Time Range" 
[28]          | "Never" 
[29] <action>   ::= "Satisfied" | "Not Satisfied" | "Completed" | 
[30]          "Incomplete" 

3.3 Vocabularies for Expressing Learning Object Semantics 

The need to determine how closely related two learning objects are to one another is 

constantly an issue.  It exists for instructional designers searching for materials, for 
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learners looking to supplement their learning with more information, as well as for edu-

cational systems which may attempt to automatically adapt course content by introduc-

ing new learning objects.  Metadata schemes such as the IEEE LOM provide a semantic 

description of a learning object that can be represented using key/value tuples.  This de-

scription can then be interrogated to determine how the learning object has changed.  

This requires that appropriate data types be set in the metadata schema, and that the au-

thoring tools, repository interfaces, and adaptive systems understand them.  An alterna-

tive this is to include the author of the learning object in the process, and acquire both 

the new value of the metadata key as well as the way in which is has been changed from 

them.  

Capturing the new value of an entry, and the key that is associated with it, is a fairly 

straight forward process.  However, capturing the manner in which it changes requires a 

state change vocabulary.  The intrinsic datatyping of metadata keys suggests that differ-

ent vocabularies are needed to express the relationship between various keys. 

Consider two learning objects, lo1, and lo2 where lo2 is a derivative of lo1.  Given a 

metadata key (for instance, the typical age range), the result of a change to this key can 

fall into a number of different states: 

• lo2 and lo1 are functionally equivalent: The meaning of the key is unchanged be-

tween the two versions.  In the case of typical age range, this would require that 

the value for lo1 and the value for lo2 are identical. 

• lo2 is a subset of lo1.  The meaning of the key for lo1 would then be a superset 

of the key for lo2.  For instance if the age range in lo2 is 7-8 and the typical age 

range in lo1 is 6-9 then lo2 is a subset of lo1 with respect to age range. 

• lo2 is a superset of lo1.  The meaning of the key for lo1 is a subset of that for 

lo2.  For instance, if the age range in lo2 is 7-8 and the age range of lo1 is 7 then 

lo2 is a superset of lo1. 

• There exists some non null intersection between lo1 and lo2.  This indicates that 

the ranges for lo1 and lo2 contain some common elements, but are not identical.  

For instance, if lo1 had an age range of 7-9 while lo2 had an age range of 8-10. 
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Set theory based change operations are only one of many different kinds of possible 

changes available for metadata keys.  For instance, consider the same objects, lo1 and a 

derivative lo2, with the metadata key semantic density.  Semantic density is an ordered 

enumeration ranging from "low" to "high", denoting the degree of conciseness of a 

learning object.  A change in semantic density could then describe learning objects in 

the following states: 

• lo2 is greater than lo1.  With respect to semantic density this would indicate that 

lo1 is a more simplified description of lo2. 

• lo2 is less than lo1.  This would indicate that lo2 holds a value earlier within the 

enumeration. 

In addition to these two kinds of changes, there are also two primitive vocabulary values 

that are suitable for all metadata keys.  These values can be used to indicate that either 

an entry has been newly added, or that the resulting change modified the entry but in an 

unknown manner.  A formal description of these three vocabularies is provided in Code 

Listing 3-8. 

Code Listing 3-8: EBNF vocabulary for capturing metadata semantic changes 

[01] <separator>          ::= ";" 
[02] <transformation>     ::= <primitive> | <set> | <enum> | <extension> 
[03] <primitive>          ::= "general:" ("Addition" | "Unknown") 
[04] <set>                ::= "set:" ("Superset" | "Subset" | "Equivalent" |  
[05]                          "Intersection") 
[06] <enum gt>            ::= "GreaterThan" <separator> <INTEGER> 
[07] <enum lt>            ::= "LessThan" <separator> <INTEGER> 
[08] <enum>               ::= "enum:" (<enum gt> | <enum lt> | "Equivalent") 
[09] <extension>          ::= <STRING> ":" <STRING> 

Each new state is preceded by a namespace.  The namespace identifies the vocabulary 

which identifies the possible options for a given metadata key.  For instance, the set 

transformation states "Superset", "Subset", "Equivalent", and "Intersection" are within 

the namespace "set".  Implementations may extend this vocabulary by specifying a 

unique namespace value, and following it with a new change operation value. 

State changes are stored only in a forward delta format – only the derivative learning 

objects hold the nature of metadata changes.  Bindings from the vocabulary to the model 
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are straight forward; the transformation state vocabulary entry is bound to the transfor-

mation element (entity 1.1.2.2), while the metadata key and value strings (entities 

1.1.2.3 and 1.1.2.1 respectfully) are determined by the metadata schema chosen.  For 

example, the version control record fragment depicted in Code Listing 3-9 demonstrates 

changes in the semantic density metadata entry using the ordered enumeration vocabu-

lary.  

Code Listing 3-9: Example version control record for semantic changes 

[01] <history xmlns="http://cs.usask.ca/~cab938/love/xml/11.01.2004" 
[02]          identifier="http://cs.usask.ca/~cab938/love/examples/1>                                                                    
[03]   <change>                                                                                                                               
[04]     <semantic value="very low" transformation="general:Addition" 
[05]      perspective="semantic-density"/>  
[06]     <log>Initial semantic density level set.</log> 
[07]   </change> 
[08]   <change>                                                                                                                       
[09]     <semantic value="low" transformation="enum:GreaterThan" 
[10]      perspective="semantic-density"/>  
[11]     <log>Increased the level of semantic density.</log> 
[12]   </change> 
[13] </history> 

It is important to note that a learning object can change with respect to several different 

perspectives in several different ways at once.  For instance, by changing a learning ob-

jects content to be more detailed and use more concise language, an author may both be 

changing the semantic density and the typical age range that object is appropriate for.  

This is supported by the metadata model in that any number of semantic changes can be 

captured and correlated with structural changes within a given change. 

3.4 Conclusions 

This chapter has provided a metadata model which defines a product space for the ver-

sioning of learning objects.  This product space encompasses popular learning object 

specifications and languages, including the Extensible Markup Language, the IMS Sim-

ple Sequencing Specification, and any metadata language which can be reduced to a tu-

ples list, such as the IEEE Learning Object Metadata standard, and the Dublin Core 

Educational specification. 
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This model builds upon other metadata specifications in a conforming fashion, in that it 

does not introduce new metadata elements to replace those which already exist (IEEE, 

Inc., 2002).  Instead, it introduces new elements only to capture those versioning princi-

ples which are absent from other metadata specifications.  Since the branching of learn-

ing objects is covered in both the Dublin Core and the IEE LOM, it recommended that 

branching be handled by use of the relation element, as described in section 2.2.3. 

While it may be tempting to use other elements from the LOM lifecycle, such as the ver-

sion element, we caution against this.  The version element is meant to capture the edi-

tion of the current learning object.  Examples within the LOM specification lead the 

reader to believe that using a major.minor numbering scheme is an appropriate way to 

do this.  There are two problems with this – first, the major.minor numbering scheme is 

used within traditional software configuration management to indicate whether this arti-

fact is a revision or a variant and what development branch this artifact was created on.  

This case is more appropriately handled by the relation element as it is easier for soft-

ware components to understand.  Secondly, the major.minor number scheme is only use-

ful when there is centralized control over the artifacts being versioned.  Much of the 

learning object repository literature suggests that learning objects are going to be used in 

decentralized environments (e.g. (Hatala and Richards, 2003)), with related versions sit-

ting in different  repositories.  This makes it unreasonable to try and keep track of de-

velopment branches with a simple incremental numbering scheme, as it would require 

centralized, or at least synchronized, control of all of the learning objects.  Instead, fol-

lowing the approach suggested here couples the version history with the object being 

versioned.  By setting the VID to a globally unique string, no centralized repository con-

trol is required. 

In addition, the annotation element from the LOM is used to add human readable com-

ments to learning object metadata to facilitate the discovery and evaluation of a learning 

object for a given problem.  This element should not be used for versioning specific 

comments (e.g. change logs) as there is no way to link individual annotations to the syn-

tactic and semantic changes that have occurred.  Instead, the annotation element should 

only be used for comments that are pedagogical or functional in nature (for example, 
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those comments that outline the pedagogical uses of the learning object, or other techni-

cal requirements that cannot be captured through other metadata elements). 

3.4.1 Benefits 

Capturing versioning information for learning objects has a number of benefits for au-

thors, learners, and software components trying to provide for adaptivity in e-learning.  

Firstly, the ability to regress, or rollback a learning object to a previous point in its his-

tory allows an author to retrieve older versions that may be more suited for their purpose 

than a new version.  Secondly, by including semantic descriptions, enhanced searching 

can be accomplished either through direct request (e.g. "Find me a learning object that 

has a typical age range which is a superset of this one") or via visualization.  Examples 

of both roll-backs and learning object visualization are provided in section 4.3 and sec-

tion 4.4 respectively. 

The approach suggested in this chapter describes a binding for learning object change 

histories into XML.  The use of XML is rampant throughout the learning object com-

munity, with only a few fringe specifications using any other binding syntax.  XML, 

however, tends to be a very verbose syntax.  Since version histories also tend to be quite 

verbose, the choice was made to formalize change histories into a more compact format 

denoted by the EBNF vocabularies above.  This format is appropriate for the data model 

as the EBNF presented uses only string values, and can be easily serialized into XML 

attribute values. 

3.4.2 Limitations 

The definition of metadata as a list of key/value pairs is reasonable for the current state 

of the art, but leaves little room for accommodating the next generation of learning ob-

ject metadata.  In particular, the efforts within the learning object community to adopt 

semantic web style RDF bindings for metadata make refinements to the approach sug-

gested necessary.  The RDF takes keys and values and turns them into more complicated 

statements made up of a subject, predicate, and an object clause.  This allows for more 

flexible metametadata, as the object clause (which, in the tuple view of metadata intrin-
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sically points to the learning object itself) and can refer to any entity – a learning object, 

digital resource, other metadata clauses, etc. 

In addition, a number of researchers have been questioning the value of coupling meta-

data so tightly to a learning object.  There may be more subjective metadata, such as a 

learner opinion, which could be held external to the object itself.  How this data could be 

versioned appropriately is in question, as the actor doing the versioning is generally the 

content author and may not be the appropriate person to indicate what learner opinion 

data is still appropriate. 

Finally, while section 3.1 suggested that it is more practical to get an author to enter 

metadata change values than it is to get all authoring tools to be fully schema aware, 

there are recent reports of authors as well as learning object tool developers being over-

whelmed by the number of metadata tags already available (IMS Global Learning Con-

sortium Inc., 2003). 
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Chapter 4  

Implementation Prototype 
This chapter describes an implementation prototype, the Learning Object Versioning 

Environment (LOVE), developed to refine portions of the version model described in 

Chapter 3.  It is implemented as a native Windows application, and stores both primitive 

and sequenced learning objects in a simple file based learning object repository using 

the IMS Content Packaging format. As it was built during the development of the ver-

sion model to help define the version model, only portions of the schemas and vocabu-

laries described previously were used.  Details of the simplifications between the sche-

mas and the prototype are described in Appendix C. 

This prototype is an integrated authoring environment where an instructional designer 

can build, sequence, and visualize learning materials.  It includes primitive learning ob-

ject creation facilities in the form of an integrated XML editor, and sequenced learning 

object creation facilities using a directory tree metaphor, where items in the directories 

are primitive learning objects, and the directories themselves are IMSSS activities.  Both 

of these components also have the ability to modify metadata associated with an object 

using a built in table interface. 

This chapter is organized as follows; section 4.1 lays the groundwork for the chapter by 

outlining an example scenario based on the anecdotal observation of the needs of uni-

versity sessional lecturer.  Next, section 4.2 outlines both the primitive and sequenced 

learning object editing facilities.  This is followed by a descriptive example of how an 

author can use the environment to roll back a primitive learning object to an older ver-

sion in section 4.3.  Finally, the chapter concludes with a demonstration of the semantic 



 56 

visualization features added to the metadata of both primitive and sequenced learning 

objects in section 4.4, and a list of limitations in section 4.5. 

4.1 Example Scenario 

A sessional lecturer is an employee hired for the expressed purpose of teaching a single 

session of a class.  While these lecturers sometimes teach later versions of the class, they 

are often replaced with new sessional lecturers or faculty for future offerings of the 

course.  Creating content in the form of assignments, exams, and lecture notes for a class 

results in the bulk of the work a sessional must do.  It thus typically remains the policy 

of an academic department to maintain old copies of course content by passing them on 

to new lecturers.  These lecturers can then adapt this content to their particular teaching 

needs. 

Adaptation of content is generally done manually – the lecturer obtains the content from 

the department, opens it with their editor of choice, and makes changes as they see fit.  

If the lecturer desires to undo their changes and go back to a previous version of the ma-

terial they are forced to compare their new content with that of the previous instructor.  

Changes in between (e.g. drafts of lecture notes) are generally not available.  Further, 

the lecturer is generally limited to only the previous years content – content going back 

to the first offering of the course is rarely available.  This is thus a problem of structural 

versioning. 

A key requirement of the adaptation process is for the lecturer to be able to identify 

which content should be kept, and which should be revised.  This is especially difficult 

when there is a large amount of content – for example, a class that is taught in three sec-

tions may have three different sets of lecture notes for a given topic.  Sifting through all 

of these to determine the differences (and similarities) can be an enormous task.  If the 

lecturer could easily identify the connections between these pieces of content (e.g. 

which came first, or how they differ with respect to a certain piece of metadata), they 

could more quickly modify and integrate the content into their course.  This is thus a 

problem of semantic versioning. 
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The rest of this chapter will consider the case of a sessional lecturer preparing part of a 

course for a third year computer science databases class. 

4.2 Learning Object Creation and Editing 

The principle feature of any authoring environment is the creation and modification of 

content.  Figure 4-1 is a screen shot of the general purpose XML and metadata editor 

built into LOVE.  The editor displays learning objects using a custom built XML syntax 

highlighting component, which maps interactions with the text directly to the underlying 

DOM model.  Further, the table below the content displays the metadata entries that ex-

ist for that learning object.  This table is editable, and allows the author to introduce new 

metadata keys (using the "a" button), remove keys that already exist (using the "d" but-

ton), change the value of a key (using the "New Version" column), and record the way 

in which a key has changed semantically (using the "Change" column, and one of the 

vocabularies presented in section 3.3).  Human readable logs can be entered in free form 

at the bottom of the editor. 

The content editing component differs from ones that are typically used in that the con-

text of available actions at any given point in time (e.g. can an element be added, or can 

a text value be changed) is determined by the location of the cursor in the content.  This 

is done by enabling or disabling the buttons to add new elements ("ae"), delete elements 

("de"), add attributes ("aa"), delete attributes ("da"), and either enabling or disabling live 

editing to allow the modification of character data (such as attribute values).  This en-

sures that the XML created will always be well formed, and provides an easy mecha-

nism for the editor to map changes to the underlying DOM. 
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Figure 4-1: The LOVE primitive learning object editing facilities 

Creating a new version of a learning object is completely transparent to the author.  

When the author saves the object or opens a different object for editing the changes are 

serialized into change sets as discussed, and stored in the IMS manifest file.  This 

change set includes a new version identifier value, as well as mappings to the DOM 

structure.  The prototype stores each keystroke as a separate structural change.  While 

this allows for very fine grained version control, it also makes for large change sets.  

The merits of this approach and alternatives are discussed in section 5.3.2. 

The learning object repository is depicted by the list of objects to the left of the editor.  

This repository is simply a collection of directories which hold IMS Content Package 

files with versioning information.  In addition to primitive learning object editing facili-

ties, LOVE provides a method of editing sequences of objects.  Sequenced learning ob-

jects are stored in the same file based repository as primitive learning objects, but in-

clude IMS Simple Sequencing information in their manifest files.  This sequencing in-
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formation is rendered in the editor as a tree of folders, where each folder corresponds to 

a learning activity.  Specific primitive learning objects are represented using a text file 

icon underneath an activity, and are named with their location, followed by an automati-

cally generated VID.  Metadata and log editing facilities are also provided, and are simi-

lar to those available for primitive learning objects.  To simplify the interface, VIDs are 

generated using a simple incrementing integer scheme.  This scheme would not be ac-

ceptable for wide scale deployment as it does not guarantee global uniqueness.  Figure 

4-2 shows a screenshot of the sequenced learning object editing facilities. 

 

Figure 4-2: The LOVE sequenced learning object editing facilities 

In the above sequencing example, and author has chosen to create a new course called 

“_er-modelling”.  This course is made up of two activities, “Basics” and “Traps”.  These 

activities contain a number of learning objects identified by their manifest location fol-

lowed by a version offset.  For instance, when the “Basics” activity is rendered to a 

learner it would first show version 1 of the “ddl” primitive object, followed by version 5 

of the “relationships” object, and ending with version 2 of the “entities” object.  These 
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objects would be displayed in accordance with any sequencing rules an author might 

add. 

It should be noted that the rollup rules and sequencing rules as provided by the version 

model in section 3.2.2 are not implemented in this prototype, and that only activity tree 

modification is captured. 

4.3 Supporting Roll-backs 

One of the key features in supporting learning object versioning is to allow course de-

signers to pick a particular version of a learning object when creating a course.  The pro-

totype implementation supports this when the author edits a sequence of learning ob-

jects.  When adding a piece of content to a learning activity, the author is able to see all 

of the primitive learning objects in the repository, and choose a version which should be 

inserted using a drop down box.  Changes in the value of the drop down box causes a 

particular object version to be rendered immediately in the lower right frame as a live 

preview. Figure 4-3 demonstrates this ability. 



 61 

 

Figure 4-3: Selecting a primitive object to add to a course 

In this instance, the author has decided to include the primitive object “fan-traps”.  

Though the initial version of this object was shown in Figure 4-1, the author has since 

modified the object to include more details and a pictorial description of the problem 

and its solution.  After determining this is the most suitable version, the author presses 

the “OK” button and the version is inserted into the course as per Figure 4-2. 

The rendering shown in the right hand window is achieved by applying all of those 

structural changes in the manifest which exist between the beginning of the manifest and 

the particular VID the author has chosen. 

4.4 Semantic Visualization 

In addition to providing a live preview of what primitive learning objects look like in a 

web browser, the prototype also provides a visualization of the whole repository of 
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learning objects
3
.  This visualization lays out both primitive and sequenced learning ob-

jects in a horizontal revision graph similar to that shown in Figure 2-4.  The visualiza-

tion allows for author interaction with the revisions graph through the use of the "-" and 

"+" handles attached to the top left of each node.  These handles either collapse or ex-

pand the corresponding version and allow the author to see a list of the metadata keys, 

their values, and the change set value for that version.  In addition, dependencies be-

tween versions of a sequenced learning object and primitive objects are presented to the 

user using red arrows which can be expanded or collapsed using the "-" and "+" handles 

attached to the bottom left of each sequencing node.  Figure 4-4 shows an example of 

this visualization. 

 

Figure 4-4: Learning object visualization in the LOVE 

In this figure, the author has chosen to collapse the “entities” timeline to reduce screen 

clutter, while keeping the timelines for all of the other learning objects open.  The author 

has expanded revision 5 of the fan-traps learning object to inspect the metadata (which 

contains only one new key).  The extra handles to the bottom left of the nodes in the se-

                                                 
3
 The graphing library used was an evaluation of GoDiagram, from Northwoods Software.  More informa-
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quenced learning object timeline allow the author to toggle dependencies on or off.  In 

this example the author has chosen to see only those versions that the latest version of 

the “_er-modelling” object requires, as shown by the arrows emanating from that node. 

In addition to visualizing the sequencing relationships between learning objects, the en-

vironment allows for visualizing semantic differences using the vocabularies defined in 

section 3.3.  The author must pick a single metadata key by which to view the reposi-

tory.  Versions that do not have this key associated with them appear as white, while 

versions that are associated with this key are shown in shades of gray.  Each vocabulary 

also has its own visualization characteristics.  The ordered enumeration vocabulary is 

represented using shades of gray, where darker values indicate that a given version is 

greater than the previous version, and lighter values indicate the version is less than the 

previous version.  Figure 4-5 shows a rendering of this using the metadata associated 

with the “fan-traps” learning object.  In this example, only the fan-traps learning object 

versions three through five are associated with the metadata key "Semantic-Density".  

Version three has a value of "low", which increases to "medium" in version four, and 

finally to "high" in version five.  By glancing at the diagram, the sessional can prune 

down the learning objects he or she wants to consider based on the depth of color for 

each node.  Once this is done, the sessional lecturer can obtain more metadata for a par-

ticular version by double clicking on its node. 

When visualizing the repository from the perspective of a metadata key that is annotated 

with the set vocabulary, a size metaphor is used.  A version which is subset of a previ-

ous version is rendered as a smaller node in the revision graph, while versions that a su-

persets of a previous version are represented with larger node.  Equivalent and intersec-

tion values are shown as similarly sized nodes. 

Figure 4-6 shows an example of visualization using the set vocabulary and the “entities” 

timeline with the “Age-Range” metadata key, which implicitly represents a set of ap-

propriate ages for a learning object.  It is important to note that the size of nodes is ren-

dered using only the previous version values, and not by inspecting all version values.  

Thus comparing the size of the first version and the third version provides no meaning-

                                                                                                                                                
tion on this library is available at the vendors’ website at http://www.nwoods.com. 
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ful knowledge about the changes if the second version has also changed (as in this ex-

ample). 
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Figure 4-5: Enumeration visualization in LOVE 

 

Figure 4-6: Set visualization in LOVE 
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4.5 Prototype Limitations 

Typical versioning environments support the notion of the branching and merging of 

revision trees.  A distributed environment is somewhat different in that the lack of cen-

tralized control makes these operations difficult.  For instance, this prototype maintains 

centralized control by assuming that the content package holding the change sets is the 

authoritative source for that learning object.  In this way, no branching or merge facili-

ties are supported.  If a more complex repository system that allowed for parallel revi-

sion trees to exist for each learning object (potentially by storing separate content pack-

ages with identical object identifiers), an author could then do branch based editing of a 

learning object.  After modifying a particular branch, the author could then commit it to 

the repository and have it stored as another content package.  The sameness principle 

described in section 3.1.3 makes it possible to construct a single visualization of such a 

repository using branch points where learning objects with the same OIDs differ in their 

version history.  The traditional software configuration management notion of a trunk 

branch which represents the main development of a learning object makes little sense in 

this kind of environment.  While some branches may be intended to be more stable or 

suitable than others for a given pedagogical purpose, it is anticipated that many branches 

will see active deployment to learning management systems, as they address the differ-

ent needs of instructional designers. 

Once branching of learning objects is available at a visualization level, authors are likely 

to want to merge different versions of an object together.  While this feature doesn’t ex-

ist in the prototype, this is directly due to the lack of branching support.  Section 5.3.5 

outlines some of the issues involved with implementing merging facilities. 
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Chapter 5  

Conclusions 
This chapter concludes the work by providing a summary of the approach taken and re-

lating it to the hypothesis proposed in Chapter 1.  General research contributions and 

future directions for this research are also discussed. 

5.1 Summary 

Current learning object authoring systems and repositories contain limited, if any, sup-

port for the evolutionary nature of a learning object.  Despite the strong anecdotal evi-

dence behind the need for such systems, there are no known learning object versioning 

systems described in the educational technology literature.   

This thesis has addressed this issue in three ways.  Firstly, it has identified the need for 

such systems and contextualized this need within the state of the art of learning object 

research.  In particular, it has identified the goal of the educational technology commu-

nity to focus on reuse.  When learning objects become easily discoverable by authors, 

they become easy to change in order to adapt to localized needs.  These changes can be 

further captured, visualized, and shared with the community as a whole.  Further, the 

thesis outlined the nature of learning objects as entities that couple content to metadata, 

and exist in a distributed and decentralized fashion. 

Secondly, this thesis has provided a model for capturing the changes associated with 

learning objects.  This model is built on the abstract notions of a version model as pre-

sented by Conradi and Westfechtel in (Conradi and Westfechtel, 1998), and outlines a 

product space for learning objects.  This product space is then formally described using 

an XML Schema.  While generalized, the schema contains elements which can then be 
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bound to specific data formats for different kinds of learning objects.  Two such data 

formats are introduced, building on the widely accepted XML DOM and the IMS Sim-

ple Sequencing specifications.  In addition, the notion of semantic versioning is intro-

duced and a change set vocabulary is defined for two kinds of metadata keys, those 

based on ordered enumerations and those based on set theory. 

Finally, an implementation prototype is created and described.  This prototype is an in-

tegrated authoring environment for learning objects, and includes a context sensitive 

syntax highlighting editing control for both primitive and sequence learning objects, as 

well as a repository visualization tool for semantic versioning.  This prototype provides 

examples of two versioning functions; rollbacks and historical visualizations. 

5.2 Research Contributions 

The primary contribution of this work is the description of a version model for learning 

objects.  The majority of the research and development in the area of learning object 

technologies has been centered on repositories for containing and describing learning 

objects.  These repositories have one primary goal – facilitating the reuse of learning 

material.  With the discovery of learning objects comes the need to modify the object to 

fit a local context.  Supporting the management of the many derivations of a learning 

object is a natural next step. 

Secondary contributions of this work include the development of versioning vocabular-

ies, in particular the change set vocabulary for XML documents.  By directly mapping 

interactions with the DOM to a serializable state, the management of XML document 

versioning is consistent as well as straightforward to implement.  As there are DOM 

based XML parsers for virtually every language and platform, this technique would be 

easy to replicate in many different environments.  This change set vocabulary could be 

easily reused to facilitate general XML versioning. 

Lastly, the production of an environment for the development and visualization of learn-

ing objects can serve as an interesting test bed for aiding in the authoring and discovery 

process.  Most repositories and authoring tools limit an instructional designer to string 

matching on search queries to find learning objects.  This ignores the many interconnec-
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tions that exist between learning objects, both structurally and semantically.  It is hoped 

that the techniques described here will encourage repository authors to consider a 

broader range of visualization techniques, regardless of whether version control is im-

plemented. 

5.3 Future Directions 

5.3.1 Empirical Validation 

One of the struggles with any work in the field of learning technologies is the long incu-

bation time required for real-world user studies.  Especially when modifying an already 

existing process, users need to feel suitably comfortable with the technology and the 

new workflows before they can provide good feedback.  This requires that highly re-

fined user interfaces be developed, in order to stop the new workflow (as opposed to the 

underlying method by which the workflow is carried out) from being rejected. 

This work introduces one such workflow.  Testing was not done with actual learning 

object authors as the principal goal of this work is to explore computational methods for 

supporting versioning in general.  There is a need, however, for the testing of a version-

ing platform aimed specifically at authors to determine additional needs they may have.  

A number of important questions include: 

• Does capturing semantic change sets increase the workload of an author to an 

unreasonable level? 

• Does the visualization of versioning information change how often authors up-

dates their courses? 

• Does coupling the version history with the learning object itself result in scal-

ability problems? 

5.3.2 Delta Compression 

The sameness principle for the version model indicates that it is the result of applying 

changes that makes a learning object unique, and not the specific changes that occur.  

This is interesting in that it provides the potential for change sets to be compressed with-

out changing the meaning of the version.  For instance, the design of the editor in the 
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prototype actually mapped each keystroke when an attribute value was selected to the 

insertion of another character in the DOM model.  Thus a five character attribute value 

was serialized as five separate XML elements, each with their own XPath identifier.  

This kind of delta could be compressed by converting the five statements into a single 

multi-character manipulation on the DOM, without compromising the integrity of the 

revision history. 

5.3.3 Branch Optimization 

Capturing the interactions with a learning object can be done at both fine and coarse 

grain levels.  The prototype described in Chapter 4 used extremely fine grain versioning, 

where individual keystrokes were invoked directly on the DOM model and stored as 

changes in a change set.  While this allows for some comprehensive rollback features 

(the document could be regressed character by character), it also increases the size of the 

history file.  If forward deltas are used, the amount of processing required to attain the 

newest version requires applying all elements in the history file. 

The model could be expanded to include the notion of lossy tag points.  A tag is typi-

cally used in version control systems to denote a particular version of interest.  Lossy tag 

points instead indicate the collapse of the version history previous to that point into a 

new artifact.  This significantly reduces the size of the version history, because it effec-

tively removes all notion of versioning from before the tag point.  This has the effect of 

speeding up regressions if forward deltas are being used, as well as minimizing the size 

of the history stored. 

5.3.4 Visualizations 

It is the firm belief of the author that visualizations of content interconnections, both 

within a learning object repository as well as within a course delivery tool, will greatly 

aid in the usability and quality of learning content produced.  Nonetheless, the produc-

tion of these visualizations has been largely ignored by the educational technology 
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community.
4
  With versioning information comes even more visualization data, and in-

tegrating this in a non-overwhelming fashion is important. 

The implementation prototype, for instance, provides a simple method for reducing the 

depth of a revision tree by collapsing nodes.  Is this appropriate for the kinds of revision 

graphs that will exist?  Does the visualization need to be more interactive?  Will it scale 

appropriately?  Is it showing the information that course authors want to see?  The next 

step in answering these questions is to test the prototype with a group of instructional 

designers. 

5.3.5 Intelligent Merging Facilities 

A principle function of any software configuration management system is the ability to 

merge versions of artifacts into a new artifact.  This process has always been error 

prone, and tends to require interaction with the content expert.  The advent of more 

strictly structured data (e.g. XML with schemas) may provide for more precise merging 

routines.  These routines, while non-trivial to develop, can interrogate schemas of in-

formation to determine how to greater merge content into a consistent state.  The more 

semantics that can expressed in machine form, the more likely it is that the author need 

not be involved in the merging process.  While there is only limited support for captur-

ing the semantics of an XML document (e.g. XML Schemas), one could imagine 

schema aware repositories that could provide even deeper levels of reasoning when 

merging versions. 

5.4 Conclusions 

Reusability is cited heavily as a motivating factor for packaging educational content in 

the form of learning objects. While the tools and techniques for creating reusable learn-

ing objects are in their infancy, they are maturing quickly.  As instructional designers 

begin to rely more heavily on learning object repositories for original content, the nature 

management of derivative works becomes an issue.  This research has begun the explo-

                                                 
4
 In the particular area of learning object repositories, the author knows only of some initial work that is 

being done on 3-D virtual environments for repositories of multimedia objects through the DISCOVER 

laboratory at the University of Ottawa.  See http://www.discover.uottawa.ca/research/LORNET.html for 

more information. 
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ration of how learning object versioning can be supported at both a structural level, and 

a semantic level. 
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Appendix A  
This appendix presents a normative binding of the version model presented in section 

3.1 using XML Schema.  All elements that are a part of the version model exist within 

the namespace http://cs.usask.ca/~cab938/love/xml/11.01.2004. 

The schema defines a number of types, in particular: 

• changeType: Encapsulates the structural and semantic changes which make up a 

given version, as well as the human readable log statement that describes that 

version.  Each changeType is associated with a version identifier (VID). 

• history: Orders the change types for a learning object, primitive or sequenced, 

such that the first change type corresponds to the first version of the learning ob-

ject, and the last corresponds to the most recent version of the learning object.  In 

this way applications can iterate over the change types in the history to build a 

revision timeline for a learning object.  Each history is associate with an object 

identifier (OID). 

• semanticType: Provides a metadata key (perspective), a new value for that key 

(value) and some description from a change set vocabulary identifying how that 

key has changed (transformation). 

• structuralType: Provides a reference to a position in the learning object (path), 

and a function that modifies that learning object (transformation).  In the case of 

a primitive learning object, these are XPath and DOM functions respectively (see 

Appendix B).  In the case of a sequenced learning object these paths through a 

tree and tree transformations respectively (see Code Listing 3-4). 

 

Code Listing A-1 provides an XML Schema for the version model. 



 80 

Code Listing A-1: Normative XML Schema for the version model 

[01] <?xml version="1.0" encoding="UTF-8"?> 
[02] <xs:schema elementFormDefault="qualified"  
[03]            xmlns:love="http://cs.usask.ca/~cab938/love/xml/11.01.2004"  
[04]            xmlns:xs="http://www.w3.org/2001/XMLSchema"  
[05]          

targetNamespace="http://cs.usask.ca/~cab938/love/xml/11.01.2004"> 
[06]     <xs:complexType name="changeType"> 
[07]         <xs:sequence> 
[08]             <xs:element name="structural"  
[09]                         type="love:structuralType"  
[10]                         minOccurs="0"  
[11]                         maxOccurs="unbounded"/> 
[12]             <xs:element name="semantic"  
[13]                         type="love:semanticType"  
[14]                         minOccurs="0"  
[15]                         maxOccurs="unbounded"/> 
[16]             <xs:element ref="love:log"  
[17]                         minOccurs="0"/> 
[18]         </xs:sequence> 
[19]         <xs:attribute name="vid"  
[20]                       type="xs:anyURI"  
[21]                       use="required"/> 
[22]     </xs:complexType> 
[23]     <xs:element name="history"> 
[24]         <xs:complexType> 
[25]             <xs:sequence> 
[26]                 <xs:element name="change"  
[27]                             type="love:changeType"  
[28]                             minOccurs="0"  
[29]                             maxOccurs="unbounded"/> 
[30]             </xs:sequence> 
[31]             <xs:attribute name="identifier"  
[32]                           type="xs:anyURI"  
[33]                           use="required"/> 
[34]         </xs:complexType> 
[35]     </xs:element> 
[36]     <xs:element name="log"  
[37]                 type="xs:string"/> 
[38]     <xs:complexType name="semanticType"> 
[39]         <xs:attribute name="value"  
[40]                       type="xs:string"  
[41]                       use="required"/> 
[42]         <xs:attribute name="transformation"  
[43]                       type="xs:string"  
[44]                       use="required"/> 
[45]         <xs:attribute name="perspective"  
[46]                       type="xs:anyURI"  
[47]                       use="required"/> 
[48]     </xs:complexType> 
[49]     <xs:complexType name="structuralType"> 
[50]         <xs:attribute name="path"  
[51]                       type="xs:string"  
[52]                       use="required"/> 
[53]         <xs:attribute name="transformation"  
[54]                       type="xs:string"  
[55]                       use="required"/> 
[56]     </xs:complexType> 
[57] </xs:schema> 
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Appendix B  
This appendix presents a binding of the Document Object Model (DOM) to a character 

syntax such that DOM invocations can be serialized into the XML change set form 

given in Appendix A.  

Code Listing B-1: EBNF bindings for the DOM 

[01] <separator> ::= ";" 
[02] <createDocumentType> ::= "createDocumentType" <separator>  
[03]                          <STRING> <separator> <STRING> <separator> 
[04]                          <STRING> 
[05] <createDocument> ::= "createDocument" <separator> <STRING>  
[06]                      <separator> <STRING> 
[07] <insertBefore> ::= "insertBefore" <separator> (<createElement> |  
[08]                    <createTextNode> | <createComment> | 
[09]                    <createCDATASection> | <createProcessingInstruction> |  
[10]                    <createAttribute> | <createEntityReference> ) 
[11] <replaceChild> ::= "replaceChild" <separator> (<createElement> |  
[12]                    <createTextNode> | <createComment> |  
[13]                    <createCDATASection> | <createProcessingInstruction> |  
[14]                    <createAttribute> | <createEntityReference> ) 
[15] <appendChild> ::= "appendChild" <separator> (<createElement> |  
[16]                   <createTextNode> | <createComment> |  
[17]                   <createCDATASection> | <createProcessingInstruction> |  
[18]                   <createAttribute> | <createEntityReference> ) 
[19] <normalize> ::= "normalize" 
[20] <setNamedItem> ::= <createAttribute> 
[21] <removeNamedItem> ::= <removeAttribute> 
[22] <setNamedItemNS> ::= <createAttribute> 
[23] <removeNamedItemNS ::= <deleteNamespace> 
[24] <deleteNamespace> ::= "deleteNamespace" 
[25] <appendData> ::= "appendData" <separator> <STRING> 
[26] <insertData> ::= "insertData" <separator> <LONG> <separator> <STRING> 
[27] <deleteData> ::= "deleteData" <separator> <LONG> <separator> <LONG> 
[28] <replaceData> ::= "replaceData" <separator> <LONG> <separator> <LONG> 
[29]                   <separator> <STRING> 
[30] <setAttribute> ::= "setAttribute" <separator> <STRING> <separator>  
[31]                    <STRING> 
[32] <removeAttribute> ::= "removeAttribute" 
[33] <setAttributeNode> ::= <setAttribute> 
[34] <removeAttributeNode> ::= "removeAttribute" 
[35] <setAttributeNS> ::= <createAttributeNS> 
[36] <removeAttributeNS> ::= "removeAttributeNS" 
[37] <setAttributeNodeNS> ::= <createAttributeNS> 
[38] <createElement> ::= "createElement" <separator> <STRING> 
[39] <createDocumentFragment> ::= "createDocumentFragment" <separator> 

<STRING> 
[40] <createTextNode> ::= "createTextNode" <separator> <STRING> 
[41] <createComment> ::= "createComment" <separator> <STRING> 
[42] <createCDATASection> ::= "createCDATASection" <separator> <STRING> 
[43] <createProcessingInstruction> ::= "createProcessingInstruction" 
[44]                                 <separator> <STRING> 
[45] <createAttribute> ::= "createAttribute" <separator> <STRING> 
[46] <createElementNS> ::= "createElementNS" <separator> <STRING> <separator>  
[47]                       <STRING> 
[48] <createAttributeNS> ::= "createAttributeNS" <separator> <STRING>  
[49]                         <separator> <STRING> 
[50] <importNode> ::= "importNode" <separator> (<createElement> | 
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[51]                  <createTextNode> | <createComment> | 
<createCDATASection> 

[52]                  | <createProcessingInstruction> | <createAttribute> | 
[53]                  <createEntityReference> ) 

The expressions from the change vocabulary above are mapped to transformation ele-

ments.  Where more than one parameter is specified, the EBNF elements are separated 

by the token ";", and parameters are kept in order. 

This binding corresponds to Level 2 of the DOM.  The DOM is a general purpose API, 

and each level represents a new evolution of this API.  The approach taken in this work 

is to couple an XPath expression (which points to a node in the DOM hierarchy) with a 

transformation to be applied to that node.  Thus a number of the DOM methods are 

functionally equivalent (e.g. the removeAttribute() and removeAttributeNode() are 

equivalent when working with an attribute node in the DOM).  In addition, the definition 

of a primitive learning object leads to using only a single XML document.  Thus some 

of the modification functions of the DOM that are intended for multi-document envi-

ronments (such as importNode()) are unlikely to be used.  Wherever possible, these 

functions have been expressed in terms of single document creation functions. 
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Appendix C  
The implementation prototype implements the version model by serializing change sets 

into XML and saving them within the IMS Content Packaging manifest.  While the pro-

totype was developed, changes were made to the XML Schema binding for the model.  

Substantial differences between the schema presented in Appendix A and the one used 

by the prototype include: 

1. OID Identifiers: The prototype uses UNC filenames instead of the more general 

URIs suggested by section 3.1.2.  While not technically incorrect, it is a poor 

programming practice as UNC names do not guarantee global uniqueness. 

2. VID Identifiers: The prototype uses single branches for each learning object, and 

thus an OID with a version offset is enough to uniquely identify a particular ver-

sion of a learning object.  In a distributed situation VIDs should be generated ac-

cording to the procedure outlined in section 3.1.2. 

In addition, the schema used by the prototype does not correspond to the one provided in 

Appendix A.  Instead the schema shown in Code Listing C-1 is used.  While semanti-

cally similar, this schema uses slightly different element names for the structural types. 

Code Listing C-1: Prototype XML Schema for the version model 

[01] <?xml version="1.0" encoding="UTF-8"?> 
[02] <xs:schema elementFormDefault="qualified"  
[03]            xmlns:love="http://cs.usask.ca/~cab938/love/xml/11.01.2004"  
[04]            xmlns:xs="http://www.w3.org/2001/XMLSchema"  
[05]          

targetNamespace="http://cs.usask.ca/~cab938/love/xml/11.01.2004"> 
[06]     <xs:complexType name="changeType"> 
[07]         <xs:sequence> 
[08]             <xs:element name="syntactic"  
[09]                         type="love:structuralType"  
[10]                         minOccurs="0"  
[11]                         maxOccurs="unbounded"/> 
[12]             <xs:element name="semantic"  
[13]                         type="love:semanticType"  
[14]                         minOccurs="0"  
[15]                         maxOccurs="unbounded"/> 
[16]             <xs:element ref="love:log"  
[17]                         minOccurs="0"/> 
[18]         </xs:sequence> 
[19]     </xs:complexType> 
[20]     <xs:element name="history"> 
[21]         <xs:complexType> 
[22]             <xs:sequence> 
[23]                 <xs:element name="change"  
[24]                             type="love:changeType"  
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[25]                             minOccurs="0"  
[26]                             maxOccurs="unbounded"/> 
[27]             </xs:sequence> 
[28]             <xs:attribute name="identifier"  
[29]                           type="xs:anyURI"  
[30]                           use="required"/> 
[31]         </xs:complexType> 
[32]     </xs:element> 
[33]     <xs:element name="log"  
[34]                 type="xs:string"/> 
[35]     <xs:complexType name="semanticType"> 
[36]         <xs:attribute name="value"  
[37]                       type="xs:string"  
[38]                       use="required"/> 
[39]         <xs:attribute name="transformation"  
[40]                       type="xs:string"  
[41]                       use="required"/> 
[42]         <xs:attribute name="perspective"  
[43]                       type="xs:anyURI"  
[44]                       use="required"/> 
[45]     </xs:complexType> 
[46]     <xs:complexType name="structuralType"> 
[47]         <xs:attribute name="path"  
[48]                       type="xs:string"  
[49]                       use="required"/> 
[50]         <xs:attribute name="transformation"  
[51]                       type="xs:string"  
[52]                       use="required"/> 
[53]     </xs:complexType> 
[54] </xs:schema> 

Lastly, the grammar for mapping changes in primitive learning objects to the DOM is 

done at a slightly higher level than that presented in Appendix B.  Instead of mapping 

directly to the DOM API, the grammar allows only for the creation and deletion of ele-

ments and attributes, and the insertion of text strings as children of these elements or 

values of these attributes.  The creation of the DOM document as a whole is implicitly 

done when the author creates a learning object.  Further, the more advanced features of 

the DOM (e.g. the insertion of a node before or after another node) are not implemented, 

but the same effect can be achieved by crafting precise XPath statements.  These func-

tions are useful for a full featured implementation, as they provide a comprehensive way 

to wrap a given XML parser.  Nonetheless, a full demonstration of the approach can be 

by relying on special XPath expressions instead.  Code Listing C-2 describes the gram-

mar for the prototype DOM bindings. 
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Code Listing C-2: Prototype EBNF bindings for the DOM 

[01] <separator> ::= ";" 
[02] <name> :: = <STRING> //The name of the node (element or attribute) 
[03] <location> ::= <LONG> //The position of the node in the child list 
[04] <text_location> ::= <LONG> //A zero based character offset 
[05] <InsertAttribute> ::= "InsertAttribute" <separator> <name> 
[06] <InsertAttributeText> ::= "InsertAttributeText" <separator>  
[07]                           <text_location> <separator> <STRING> 
[08] <InsertElement> ::= "InsertElement" <separator> <location>  
[09]                     <separator> <name> 
[10] <InsertElementText> ::= "InsertElementText" <separator>  
[11]                          <text_location> <separator> <STRING> 
[12]  

Code Listing C-3 provides an example of the output generated by the prototype for the 

learning object presented in Code Listing 3-1. 

Code Listing C-3: Example prototype IMS Manifest 

[01] <?xml version="1.0"?> 
[02] <manifest xmlns="http://www.imsproject.org/xsd/imscp_rootv1p1p2"> 
[03]   <metadata /> 
[04]   <organizations /> 
[05]   <resources> 
[06]     <resource d3p1:identifier="C:\_lor\brown_fox\index.xhtml"  
[07]               d3p1:type="webcontent"  
[08]               d3p1:href="C:\_lor\brown_fox\index.xhtml"  
[09]               

xmlns:d3p1="http://www.imsproject.org/xsd/imscp_rootv1p1p2"> 
[10]       <love:history  
[11]             xmlns:love="http://cs.usask.ca/~cab938/love/xml/11.01.2004"> 
[12]         <love:change> 
[13]           <love:syntactic love:path="/"  
[14]                           love:transformation="InsertElement:1:html" /> 
[15]           <love:log> 
[16]           </love:log> 
[17]         </love:change> 
[18]         <love:change> 
[19]           <love:syntactic love:path="/*[1]"  
[20]                           love:transformation="InsertElement:1:body" /> 
[21]           <love:syntactic love:path="/*[1]/*[1]"  
[22]                           love:transformation="InsertElement:1:p" /> 
[23]           <love:syntactic love:path="/*[1]/*[1]/*[1]"  
[24]                           love:transformation="InsertTextNode:1:T" /> 
[25]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[26]                           love:transformation="InsertElementText:1:h" /> 
[27]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[28]                           love:transformation="InsertElementText:2:e" /> 
[29]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[30]                           love:transformation="InsertElementText:3: " /> 
[31]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[32]                           love:transformation="InsertElementText:4:q" /> 
[33]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[34]                           love:transformation="InsertElementText:5:u" /> 
[35]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[36]                           love:transformation="InsertElementText:6:i" /> 
[37]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
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[38]                           love:transformation="InsertElementText:7:c" /> 
[39]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[40]                           love:transformation="InsertElementText:8:k" /> 
[41]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[42]                           love:transformation="InsertElementText:9: " /> 
[43]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[44]                           love:transformation="InsertElementText:10:b" /> 
[45]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[46]                           love:transformation="InsertElementText:11:r" /> 
[47]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[48]                           love:transformation="InsertElementText:12:o" /> 
[49]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[50]                           love:transformation="InsertElementText:13:w" /> 
[51]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[52]                           love:transformation="InsertElementText:14:n" /> 
[53]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[54]                           love:transformation="InsertElementText:15: " /> 
[55]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[56]                           love:transformation="InsertElementText:16:f" /> 
[57]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[58]                           love:transformation="InsertElementText:17:o" /> 
[59]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[60]                           love:transformation="InsertElementText:18:x" /> 
[61]           <love:syntactic love:path="/*[1]/*[1]/*[1]/text()[1]"  
[62]                           love:transformation="InsertElementText:19:." /> 
[63]           <love:log> 
[64]           </love:log> 
[65]         </love:change> 
[66]       </love:history> 
[67]     </resource> 
[68]   </resources> 
[69] </manifest> 

 


